Compare commits
9 Commits
db2c3d28b6
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 2ed3bbf4dc | |||
| f537027329 | |||
| 902de6a12b | |||
| 77fc1bb186 | |||
| 46404e2b53 | |||
| 995d902334 | |||
| 1d262e5e19 | |||
| c7c6164ddf | |||
| 284ef20570 |
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -14,3 +14,7 @@
|
||||
path = src/FAST_LIO
|
||||
url = https://github.com/Ericsii/FAST_LIO.git
|
||||
branch = ros2
|
||||
[submodule "src/livox_ros2_driver"]
|
||||
path = src/livox_ros2_driver
|
||||
url = https://github.com/Livox-SDK/livox_ros2_driver
|
||||
branch = fix_build_error
|
||||
|
||||
231
scripts/calibrate_lidar.py
Normal file
231
scripts/calibrate_lidar.py
Normal file
@@ -0,0 +1,231 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.executors import MultiThreadedExecutor
|
||||
from sensor_msgs.msg import PointCloud2
|
||||
from geometry_msgs.msg import TransformStamped
|
||||
import sensor_msgs_py.point_cloud2 as pc2
|
||||
from tf2_ros import StaticTransformBroadcaster
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import struct
|
||||
from io import BytesIO
|
||||
import threading
|
||||
import time
|
||||
import open3d as o3d
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
|
||||
class PointCloudSaver(Node):
|
||||
def __init__(self, node_name: str, pointcloud_topic: str, buffer, timeout_ms: int):
|
||||
super().__init__(node_name)
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
pointcloud_topic,
|
||||
self.callback,
|
||||
10
|
||||
)
|
||||
self.buffer = buffer
|
||||
self.finished = False
|
||||
self.points = []
|
||||
self.end_time = self.get_clock().now().nanoseconds + (timeout_ms * 1_000_000)
|
||||
self.cmap = plt.get_cmap('jet')
|
||||
|
||||
def callback(self, msg):
|
||||
now = self.get_clock().now().nanoseconds
|
||||
for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
|
||||
self.points.append([p[0], p[1], p[2], p[3]])
|
||||
|
||||
if now > self.end_time:
|
||||
if not self.points:
|
||||
self.get_logger().warn("No points received!")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
return
|
||||
|
||||
np_points = np.array(self.points, dtype=np.float32)
|
||||
intensities = np_points[:, 3]
|
||||
norm_int = (intensities - intensities.min()) / (intensities.ptp() + 1e-8)
|
||||
|
||||
# Map normalized intensity to RGB colormap
|
||||
colors = self.cmap(norm_int)[:, :3] # RGB 0-1
|
||||
colors = (colors * 255).astype(np.uint8)
|
||||
rgb_int = np.left_shift(colors[:,0].astype(np.uint32), 16) | \
|
||||
np.left_shift(colors[:,1].astype(np.uint32), 8) | \
|
||||
colors[:,2].astype(np.uint32)
|
||||
|
||||
filename = "pointcloud.pcd"
|
||||
self.write_pcd_with_intensity_rgb(filename, np_points, rgb_int)
|
||||
self.get_logger().info(f"Saved {filename}")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
|
||||
def write_pcd_with_intensity_rgb(self, filename, points, rgb_int):
|
||||
header = f"""# .PCD v0.7 - Point Cloud Data file format
|
||||
VERSION 0.7
|
||||
FIELDS x y z intensity rgb
|
||||
SIZE 4 4 4 4 4
|
||||
TYPE F F F F U
|
||||
COUNT 1 1 1 1 1
|
||||
WIDTH {points.shape[0]}
|
||||
HEIGHT 1
|
||||
VIEWPOINT 0 0 0 1 0 0 0
|
||||
POINTS {points.shape[0]}
|
||||
DATA binary
|
||||
"""
|
||||
self.buffer.write(header.encode('ascii'))
|
||||
for i in range(points.shape[0]):
|
||||
self.buffer.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
|
||||
|
||||
|
||||
class LidarTransformPublisher(Node):
|
||||
def __init__(self, lidar1_buffer, lidar1_frame, lidar2_buffer, lidar2_frame):
|
||||
super().__init__('static_transform_lidar_offsets')
|
||||
self.br = StaticTransformBroadcaster(self)
|
||||
self.lidar1_buffer = lidar1_buffer
|
||||
self.lidar2_buffer = lidar2_buffer
|
||||
self.lidar1_frame = lidar1_frame
|
||||
self.lidar2_frame = lidar2_frame
|
||||
|
||||
def publish(self):
|
||||
self.pcd_1 = self.pcd_buffer_to_o3d(self.lidar1_buffer)
|
||||
self.pcd_2 = self.pcd_buffer_to_o3d(self.lidar2_buffer)
|
||||
|
||||
self.T = self.compute_transform()
|
||||
self.get_logger().info(f"Computed initial transform:\n{self.T}")
|
||||
|
||||
T_copy = np.array(self.T, copy=True)
|
||||
trans = T_copy[:3, 3]
|
||||
rot_quat = R.from_matrix(T_copy[:3, :3]).as_quat()
|
||||
|
||||
t = TransformStamped()
|
||||
t.header.stamp.sec = 0
|
||||
t.header.stamp.nanosec = 0
|
||||
t.header.frame_id = self.lidar1_frame
|
||||
t.child_frame_id = self.lidar2_frame
|
||||
t.transform.translation.x = trans[0]
|
||||
t.transform.translation.y = trans[1]
|
||||
t.transform.translation.z = trans[2]
|
||||
t.transform.rotation.x = rot_quat[0]
|
||||
t.transform.rotation.y = rot_quat[1]
|
||||
t.transform.rotation.z = rot_quat[2]
|
||||
t.transform.rotation.w = rot_quat[3]
|
||||
|
||||
self.br.sendTransform(t)
|
||||
self.get_logger().info("Published static transform.")
|
||||
|
||||
def pcd_buffer_to_o3d(self, buffer: BytesIO):
|
||||
buffer.seek(0)
|
||||
header_lines = []
|
||||
while True:
|
||||
line = buffer.readline().decode('ascii').strip()
|
||||
if not line:
|
||||
continue
|
||||
header_lines.append(line)
|
||||
if line.startswith("DATA"):
|
||||
data_line = line
|
||||
break
|
||||
|
||||
if not data_line.lower().startswith("data binary"):
|
||||
raise NotImplementedError("Only binary PCD supported")
|
||||
|
||||
num_points = 0
|
||||
for line in header_lines:
|
||||
if line.startswith("POINTS"):
|
||||
num_points = int(line.split()[1])
|
||||
if num_points == 0:
|
||||
raise ValueError("PCD header missing point count")
|
||||
|
||||
dtype = np.dtype([
|
||||
('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
|
||||
('intensity', 'f4'), ('rgb', 'u4')
|
||||
])
|
||||
|
||||
data = buffer.read(num_points * dtype.itemsize)
|
||||
points_array = np.frombuffer(data, dtype=dtype, count=num_points)
|
||||
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
xyz = np.stack([points_array['x'], points_array['y'], points_array['z']], axis=-1)
|
||||
pcd.points = o3d.utility.Vector3dVector(xyz)
|
||||
return pcd
|
||||
|
||||
def compute_transform(self):
|
||||
voxel_size = 0.2 # coarse-to-fine pyramid base
|
||||
|
||||
# --- Feature extraction ---
|
||||
def preprocess(pcd, voxel):
|
||||
pcd_down = pcd.voxel_down_sample(voxel)
|
||||
pcd_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=voxel*2, max_nn=30))
|
||||
fpfh = o3d.pipelines.registration.compute_fpfh_feature(
|
||||
pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=voxel*5, max_nn=100))
|
||||
return pcd_down, fpfh
|
||||
|
||||
src_down, src_fpfh = preprocess(self.pcd_2, voxel_size)
|
||||
tgt_down, tgt_fpfh = preprocess(self.pcd_1, voxel_size)
|
||||
|
||||
# --- Global alignment with RANSAC ---
|
||||
result_ransac = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
|
||||
src_down, tgt_down, src_fpfh, tgt_fpfh, True,
|
||||
1.5, # distance threshold
|
||||
o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
|
||||
4,
|
||||
[
|
||||
o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
|
||||
o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(1.5)
|
||||
],
|
||||
o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 500)
|
||||
)
|
||||
|
||||
trans_init = result_ransac.transformation
|
||||
|
||||
# --- Multi-scale ICP refinement ---
|
||||
voxel_radii = [0.2, 0.1, 0.05]
|
||||
max_iters = [50, 30, 14]
|
||||
transformation = trans_init
|
||||
for radius, iters in zip(voxel_radii, max_iters):
|
||||
src_down = self.pcd_2.voxel_down_sample(radius)
|
||||
tgt_down = self.pcd_1.voxel_down_sample(radius)
|
||||
src_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius*2, max_nn=30))
|
||||
tgt_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius*2, max_nn=30))
|
||||
|
||||
result_icp = o3d.pipelines.registration.registration_icp(
|
||||
src_down, tgt_down, radius*2, transformation,
|
||||
o3d.pipelines.registration.TransformationEstimationPointToPlane()
|
||||
)
|
||||
transformation = result_icp.transformation
|
||||
|
||||
return transformation
|
||||
|
||||
|
||||
def monitor_nodes(nodes, publisher):
|
||||
while rclpy.ok():
|
||||
if all(node.finished for node in nodes):
|
||||
print("All pointclouds captured")
|
||||
publisher.publish()
|
||||
return
|
||||
time.sleep(0.1)
|
||||
|
||||
def main():
|
||||
rclpy.init()
|
||||
buffer_velodyne = BytesIO()
|
||||
buffer_livox = BytesIO()
|
||||
|
||||
executor = MultiThreadedExecutor()
|
||||
nodes = [
|
||||
PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', buffer_velodyne, 350),
|
||||
PointCloudSaver('livox_pcd_saver', '/livox/lidar', buffer_livox, 1000),
|
||||
]
|
||||
publisher = LidarTransformPublisher(buffer_velodyne, 'velodyne', buffer_livox, 'frame_default')
|
||||
|
||||
monitor_thread = threading.Thread(target=monitor_nodes, args=(nodes,publisher), daemon=True)
|
||||
monitor_thread.start()
|
||||
|
||||
for node in nodes:
|
||||
executor.add_node(node)
|
||||
try:
|
||||
executor.spin()
|
||||
finally:
|
||||
monitor_thread.join()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
87
scripts/publish_lidar_offset.py
Normal file
87
scripts/publish_lidar_offset.py
Normal file
@@ -0,0 +1,87 @@
|
||||
#!/usr/bin/env python3
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from tf2_ros import StaticTransformBroadcaster
|
||||
from geometry_msgs.msg import TransformStamped
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
|
||||
class StaticTransformPublisher(Node):
|
||||
def __init__(self):
|
||||
super().__init__('static_transform_from_pointclouds')
|
||||
|
||||
# Static TF broadcaster
|
||||
self.br = StaticTransformBroadcaster(self)
|
||||
|
||||
# Pointcloud files
|
||||
self.velodyne_file = "/root/velodyne.pcd"
|
||||
self.livox_file = "/root/livox.pcd"
|
||||
|
||||
# Frames
|
||||
self.livox_frame = "frame_default"
|
||||
self.velodyne_frame = "velodyne"
|
||||
|
||||
# Compute transform once
|
||||
self.T = self.compute_transform()
|
||||
self.get_logger().info(f"Computed initial transform:\n{self.T}")
|
||||
|
||||
# Prepare translation and rotation
|
||||
T_copy = np.array(self.T, copy=True)
|
||||
trans = T_copy[:3, 3]
|
||||
rot_quat = R.from_matrix(T_copy[:3, :3]).as_quat() # [x, y, z, w]
|
||||
|
||||
# Create static TransformStamped
|
||||
t = TransformStamped()
|
||||
t.header.stamp.sec = 0
|
||||
t.header.stamp.nanosec = 0
|
||||
t.header.frame_id = self.velodyne_frame
|
||||
t.child_frame_id = self.livox_frame
|
||||
t.transform.translation.x = trans[0]
|
||||
t.transform.translation.y = trans[1]
|
||||
t.transform.translation.z = trans[2]
|
||||
t.transform.rotation.x = rot_quat[0]
|
||||
t.transform.rotation.y = rot_quat[1]
|
||||
t.transform.rotation.z = rot_quat[2]
|
||||
t.transform.rotation.w = rot_quat[3]
|
||||
|
||||
# Publish once
|
||||
self.br.sendTransform(t)
|
||||
self.get_logger().info("Published static transform.")
|
||||
|
||||
def compute_transform(self):
|
||||
# Load point clouds
|
||||
pcd_vel = o3d.io.read_point_cloud(self.velodyne_file)
|
||||
pcd_liv = o3d.io.read_point_cloud(self.livox_file)
|
||||
|
||||
# Downsample
|
||||
voxel_size = 0.05
|
||||
pcd_vel_ds = pcd_vel.voxel_down_sample(voxel_size)
|
||||
pcd_liv_ds = pcd_liv.voxel_down_sample(voxel_size)
|
||||
|
||||
# Estimate normals
|
||||
pcd_vel_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
|
||||
pcd_liv_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
|
||||
|
||||
# ICP registration
|
||||
threshold = 0.5
|
||||
reg_result = o3d.pipelines.registration.registration_icp(
|
||||
pcd_liv_ds, pcd_vel_ds, threshold,
|
||||
np.eye(4),
|
||||
o3d.pipelines.registration.TransformationEstimationPointToPoint()
|
||||
)
|
||||
return reg_result.transformation
|
||||
|
||||
def main(args=None):
|
||||
rclpy.init(args=args)
|
||||
node = StaticTransformPublisher()
|
||||
try:
|
||||
rclpy.spin(node)
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
finally:
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
113
scripts/save_pointcloud.py
Normal file
113
scripts/save_pointcloud.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.executors import MultiThreadedExecutor
|
||||
from sensor_msgs.msg import PointCloud2
|
||||
import sensor_msgs_py.point_cloud2 as pc2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import struct
|
||||
from io import BytesIO
|
||||
import threading
|
||||
import time
|
||||
|
||||
class PointCloudSaver(Node):
|
||||
def __init__(self, node_name: str, pointcloud_topic: str, buffer, timeout_ms: int):
|
||||
super().__init__(node_name)
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
pointcloud_topic,
|
||||
self.callback,
|
||||
10
|
||||
)
|
||||
self.buffer = buffer
|
||||
self.finished = False
|
||||
self.points = []
|
||||
self.end_time = self.get_clock().now().nanoseconds + (timeout_ms * 1_000_000)
|
||||
self.cmap = plt.get_cmap('jet')
|
||||
|
||||
def callback(self, msg):
|
||||
now = self.get_clock().now().nanoseconds
|
||||
for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
|
||||
self.points.append([p[0], p[1], p[2], p[3]])
|
||||
|
||||
if now > self.end_time:
|
||||
if not self.points:
|
||||
self.get_logger().warn("No points received!")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
return
|
||||
|
||||
np_points = np.array(self.points, dtype=np.float32)
|
||||
intensities = np_points[:, 3]
|
||||
norm_int = (intensities - intensities.min()) / (intensities.ptp() + 1e-8)
|
||||
|
||||
# Map normalized intensity to RGB colormap
|
||||
colors = self.cmap(norm_int)[:, :3] # RGB 0-1
|
||||
colors = (colors * 255).astype(np.uint8)
|
||||
rgb_int = np.left_shift(colors[:,0].astype(np.uint32), 16) | \
|
||||
np.left_shift(colors[:,1].astype(np.uint32), 8) | \
|
||||
colors[:,2].astype(np.uint32)
|
||||
|
||||
filename = "pointcloud.pcd"
|
||||
self.write_pcd_with_intensity_rgb(filename, np_points, rgb_int)
|
||||
self.get_logger().info(f"Saved {filename}")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
|
||||
def write_pcd_with_intensity_rgb(self, filename, points, rgb_int):
|
||||
header = f"""# .PCD v0.7 - Point Cloud Data file format
|
||||
VERSION 0.7
|
||||
FIELDS x y z intensity rgb
|
||||
SIZE 4 4 4 4 4
|
||||
TYPE F F F F U
|
||||
COUNT 1 1 1 1 1
|
||||
WIDTH {points.shape[0]}
|
||||
HEIGHT 1
|
||||
VIEWPOINT 0 0 0 1 0 0 0
|
||||
POINTS {points.shape[0]}
|
||||
DATA binary
|
||||
"""
|
||||
self.buffer.write(header.encode('ascii'))
|
||||
for i in range(points.shape[0]):
|
||||
# x, y, z, intensity as float32, rgb as uint32
|
||||
self.buffer.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
|
||||
|
||||
def monitor_nodes(nodes):
|
||||
"""Separate thread that monitors node status and shuts down ROS when done."""
|
||||
while rclpy.ok():
|
||||
if all(node.finished for node in nodes):
|
||||
print("All nodes finished. Shutting down ROS.")
|
||||
rclpy.shutdown()
|
||||
break
|
||||
time.sleep(0.1) # check periodically
|
||||
|
||||
def main():
|
||||
rclpy.init()
|
||||
file_velodyne = open('/root/velodyne.pcd', "wb+")
|
||||
file_livox = open('/root/livox.pcd', "wb+")
|
||||
|
||||
executor = MultiThreadedExecutor()
|
||||
|
||||
nodes = [
|
||||
PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', file_velodyne, 5000),
|
||||
PointCloudSaver('livox_pcd_saver', '/livox/lidar', file_livox, 5000),
|
||||
]
|
||||
|
||||
monitor_thread = threading.Thread(target=monitor_nodes, args=(nodes,), daemon=True)
|
||||
monitor_thread.start()
|
||||
|
||||
for node in nodes:
|
||||
executor.add_node(node)
|
||||
try:
|
||||
executor.spin()
|
||||
finally:
|
||||
monitor_thread.join()
|
||||
print("Executor and monitor thread exited cleanly.")
|
||||
|
||||
file_velodyne.close()
|
||||
file_livox.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
1
src/livox_ros2_driver
Submodule
1
src/livox_ros2_driver
Submodule
Submodule src/livox_ros2_driver added at ec8fb3fc23
48
src/sherpa/config/fastlio2_mid40.yaml
Normal file
48
src/sherpa/config/fastlio2_mid40.yaml
Normal file
@@ -0,0 +1,48 @@
|
||||
/**:
|
||||
ros__parameters:
|
||||
feature_extract_enable: false
|
||||
point_filter_num: 1
|
||||
max_iteration: 25
|
||||
filter_size_surf: 0.5
|
||||
filter_size_map: 0.5
|
||||
cube_side_length: 1000.0
|
||||
runtime_pos_log_enable: false
|
||||
map_file_path: "/home/timo/Downloads/scan.pcd"
|
||||
|
||||
common:
|
||||
lid_topic: "/livox/lidar"
|
||||
imu_topic: "/imu"
|
||||
time_sync_en: false # ONLY turn on when external time synchronization is really not possible
|
||||
time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
|
||||
# This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0
|
||||
|
||||
preprocess:
|
||||
lidar_type: 0 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
|
||||
scan_line: 1
|
||||
timestamp_unit: 3 # the unit of time/t field in the PointCloud2 rostopic: 0-second, 1-milisecond, 2-microsecond, 3-nanosecond.
|
||||
blind: 0.35
|
||||
|
||||
mapping:
|
||||
acc_cov: 0.01
|
||||
gyr_cov: 0.025
|
||||
b_acc_cov: 0.001
|
||||
b_gyr_cov: 0.00025
|
||||
fov_degree: 38.4
|
||||
det_range: 260.0
|
||||
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic,
|
||||
extrinsic_T: [ 0., 0., 0.05]
|
||||
extrinsic_R: [ 1., 0., 0.,
|
||||
0., 1., 0.,
|
||||
0., 0., -1.]
|
||||
|
||||
publish:
|
||||
path_en: true
|
||||
map_en: true
|
||||
scan_publish_en: true # false: close all the point cloud output
|
||||
dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
|
||||
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
|
||||
|
||||
pcd_save:
|
||||
pcd_save_en: true
|
||||
interval: -1 # how many LiDAR frames saved in each pcd file;
|
||||
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.
|
||||
53
src/sherpa/launch/odometry_mid40.launch.py
Normal file
53
src/sherpa/launch/odometry_mid40.launch.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import os.path
|
||||
|
||||
from ament_index_python.packages import get_package_share_directory
|
||||
|
||||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
from launch.substitutions import LaunchConfiguration, PathJoinSubstitution
|
||||
from launch_ros.substitutions import FindPackageShare
|
||||
from launch.conditions import IfCondition
|
||||
|
||||
def generate_launch_description():
|
||||
|
||||
ld = LaunchDescription()
|
||||
|
||||
livox_driver = Node(
|
||||
package='livox_ros2_driver',
|
||||
executable='livox_ros2_driver_node',
|
||||
arguments=[]
|
||||
)
|
||||
|
||||
imu = Node(
|
||||
package = 'witmotion_ros',
|
||||
executable = 'witmotion_ros_node',
|
||||
parameters = [os.path.join(get_package_share_directory('sherpa'), 'config', 'wt931.yml')]
|
||||
)
|
||||
|
||||
fast_lio = Node(
|
||||
package='fast_lio',
|
||||
executable='fastlio_mapping',
|
||||
output='screen',
|
||||
parameters=[PathJoinSubstitution([os.path.join(get_package_share_directory('sherpa'), 'config'), 'fastlio2_mid40.yaml'])]
|
||||
)
|
||||
|
||||
tf_laserscan = Node(
|
||||
package='tf2_ros',
|
||||
executable='static_transform_publisher',
|
||||
arguments=['0.0', '0', '0.0', '0', '0', '0', '1', 'body', 'frame_default']
|
||||
)
|
||||
|
||||
tf_map = Node(
|
||||
package='tf2_ros',
|
||||
executable='static_transform_publisher',
|
||||
arguments=['0.0', '0', '0.0', '0', '0', '0', '1', 'camera_init', 'map']
|
||||
)
|
||||
|
||||
|
||||
ld.add_action(livox_driver)
|
||||
ld.add_action(imu)
|
||||
ld.add_action(fast_lio)
|
||||
ld.add_action(tf_laserscan)
|
||||
ld.add_action(tf_map)
|
||||
|
||||
return ld
|
||||
23
src/sherpa/launch/pointcloud-mid40.py
Executable file
23
src/sherpa/launch/pointcloud-mid40.py
Executable file
@@ -0,0 +1,23 @@
|
||||
import os.path
|
||||
|
||||
from ament_index_python.packages import get_package_share_directory
|
||||
|
||||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
from launch.substitutions import LaunchConfiguration, PathJoinSubstitution
|
||||
from launch_ros.substitutions import FindPackageShare
|
||||
from launch.conditions import IfCondition
|
||||
|
||||
def generate_launch_description():
|
||||
|
||||
ld = LaunchDescription()
|
||||
|
||||
livox_driver = Node(
|
||||
package='livox_ros2_driver',
|
||||
executable='livox_ros2_driver_node',
|
||||
arguments=[]
|
||||
)
|
||||
|
||||
ld.add_action(livox_driver)
|
||||
|
||||
return ld
|
||||
30
src/sherpa/launch/pointcloud-vlp16.py
Executable file
30
src/sherpa/launch/pointcloud-vlp16.py
Executable file
@@ -0,0 +1,30 @@
|
||||
import os.path
|
||||
|
||||
from ament_index_python.packages import get_package_share_directory
|
||||
|
||||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
from launch.substitutions import LaunchConfiguration, PathJoinSubstitution
|
||||
from launch_ros.substitutions import FindPackageShare
|
||||
from launch.conditions import IfCondition
|
||||
|
||||
def generate_launch_description():
|
||||
|
||||
ld = LaunchDescription()
|
||||
|
||||
velodyne_raw = Node(
|
||||
package='velodyne_driver',
|
||||
executable='velodyne_driver_node',
|
||||
arguments=["--ros-args", "-p", "model:=VLP16", "-p", "rpm:=600.0", "-p", "device_ip:=10.42.30.200"]
|
||||
)
|
||||
|
||||
velodyne_pointcloud = Node(
|
||||
package='velodyne_pointcloud',
|
||||
executable='velodyne_transform_node',
|
||||
arguments=["--ros-args", "-p", f"calibration:={os.path.join(get_package_share_directory('sherpa'), 'config', 'vlp-16-pointcloud.yaml')}", "-p", "model:=VLP16"]
|
||||
)
|
||||
|
||||
ld.add_action(velodyne_raw)
|
||||
ld.add_action(velodyne_pointcloud)
|
||||
|
||||
return ld
|
||||
85
src/target_tracking/CMakeLists.txt
Normal file
85
src/target_tracking/CMakeLists.txt
Normal file
@@ -0,0 +1,85 @@
|
||||
cmake_minimum_required(VERSION 3.8)
|
||||
project(target_tracking)
|
||||
|
||||
# Required packages
|
||||
find_package(ament_cmake REQUIRED)
|
||||
find_package(rclcpp REQUIRED)
|
||||
find_package(sensor_msgs REQUIRED)
|
||||
find_package(pcl_conversions REQUIRED)
|
||||
find_package(PCL REQUIRED)
|
||||
find_package(tf2 REQUIRED)
|
||||
find_package(tf2_ros REQUIRED)
|
||||
find_package(tf2_sensor_msgs REQUIRED)
|
||||
find_package(OpenCV REQUIRED)
|
||||
find_package(visualization_msgs REQUIRED)
|
||||
|
||||
|
||||
# Include paths
|
||||
include_directories(
|
||||
include
|
||||
${PCL_INCLUDE_DIRS}
|
||||
${OpenCV_INCLUDE_DIRS}
|
||||
)
|
||||
|
||||
# Node for preprocessing
|
||||
add_executable(cloud_preprocessing_node
|
||||
src/cloud_preprocessing.cpp
|
||||
)
|
||||
|
||||
# Dependencies for preprocessing
|
||||
ament_target_dependencies(cloud_preprocessing_node
|
||||
rclcpp
|
||||
sensor_msgs
|
||||
pcl_conversions
|
||||
tf2
|
||||
tf2_ros
|
||||
tf2_sensor_msgs
|
||||
)
|
||||
|
||||
# Node for clustering
|
||||
add_executable(cloud_clustering_node
|
||||
src/cloud_clustering_node.cpp
|
||||
)
|
||||
|
||||
add_library(cloud_clustering SHARED
|
||||
src/cloud_clustering.cpp)
|
||||
target_compile_definitions(cloud_clustering
|
||||
PRIVATE "COMPOSITION_BUILDING_DLL")
|
||||
|
||||
|
||||
# Dependencies for clustering
|
||||
ament_target_dependencies(cloud_clustering
|
||||
rclcpp
|
||||
sensor_msgs
|
||||
visualization_msgs
|
||||
PCL
|
||||
pcl_conversions
|
||||
OpenCV
|
||||
)
|
||||
|
||||
rclcpp_components_register_nodes(cloud_clustering "cloud_clustering::CloudClustering")
|
||||
set(node_plugins "${node_plugins}cloud_clustering::CloudClustering;$<TARGET_FILE:cloud_clustering>\n")
|
||||
|
||||
target_link_libraries(cloud_clustering_node cloud_clustering)
|
||||
|
||||
# Install target
|
||||
install(TARGETS
|
||||
cloud_preprocessing_node
|
||||
cloud_clustering_node
|
||||
DESTINATION lib/${PROJECT_NAME}
|
||||
)
|
||||
|
||||
install(TARGETS
|
||||
cloud_clustering
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib
|
||||
RUNTIME DESTINATION lib/${PACKAGE_NAME}
|
||||
)
|
||||
|
||||
# Install launchfile
|
||||
install(
|
||||
DIRECTORY launch/
|
||||
DESTINATION share/${PROJECT_NAME}/launch
|
||||
)
|
||||
|
||||
ament_package()
|
||||
3
src/target_tracking/README.md
Normal file
3
src/target_tracking/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Target tracking
|
||||
|
||||
Ros2 implementation of a filtering node in combination with a clustering node to find a target with lidar data
|
||||
106
src/target_tracking/include/cloud_clustering.hpp
Normal file
106
src/target_tracking/include/cloud_clustering.hpp
Normal file
@@ -0,0 +1,106 @@
|
||||
#ifndef CLOUD_CLUSTERING_HPP
|
||||
#define CLOUD_CLUSTERING_HPP
|
||||
|
||||
#include "rclcpp/rclcpp.hpp"
|
||||
|
||||
#include <geometry_msgs/msg/point.hpp>
|
||||
#include "visualization_msgs/msg/marker_array.hpp"
|
||||
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
|
||||
#include "std_msgs/msg/float32_multi_array.hpp"
|
||||
#include "std_msgs/msg/int32_multi_array.hpp"
|
||||
|
||||
#include "sensor_msgs/msg/point_cloud2.hpp"
|
||||
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
|
||||
namespace cloud_clustering
|
||||
{
|
||||
// KF init
|
||||
int stateDim = 4; // [x,y,v_x,v_y]//,w,h]
|
||||
int measDim = 2; // [z_x,z_y,z_w,z_h]
|
||||
int ctrlDim = 0;
|
||||
|
||||
std::string frame_id;
|
||||
std::string topic_in;
|
||||
|
||||
float z_dim_scale;
|
||||
float cluster_tolerance;
|
||||
int min_cluster_size;
|
||||
int max_cluster_size;
|
||||
float min_width;
|
||||
float min_height;
|
||||
float min_length;
|
||||
float max_width;
|
||||
float max_height;
|
||||
float max_length;
|
||||
|
||||
cv::KalmanFilter KF0(stateDim, measDim, ctrlDim, CV_32F);
|
||||
cv::KalmanFilter KF1(stateDim, measDim, ctrlDim, CV_32F);
|
||||
cv::KalmanFilter KF2(stateDim, measDim, ctrlDim, CV_32F);
|
||||
cv::KalmanFilter KF3(stateDim, measDim, ctrlDim, CV_32F);
|
||||
cv::KalmanFilter KF4(stateDim, measDim, ctrlDim, CV_32F);
|
||||
cv::KalmanFilter KF5(stateDim, measDim, ctrlDim, CV_32F);
|
||||
|
||||
std::vector<geometry_msgs::msg::Point> prevClusterCenters;
|
||||
|
||||
cv::Mat state(stateDim, 1, CV_32F);
|
||||
cv::Mat_<float> measurement(2, 1);
|
||||
|
||||
std::vector<int> objID; // Output of the data association using KF
|
||||
// measurement.setTo(Scalar(0));
|
||||
|
||||
bool firstFrame = true;
|
||||
/*
|
||||
cv::Mat state(stateDim, 1, CV_32F);
|
||||
cv::Mat_<float> measurement(2, 1);
|
||||
*/
|
||||
|
||||
class CloudClustering : public rclcpp::Node
|
||||
{
|
||||
public:
|
||||
CloudClustering(
|
||||
const rclcpp::NodeOptions &options = rclcpp::NodeOptions());
|
||||
CloudClustering(
|
||||
const std::string &name_space,
|
||||
const rclcpp::NodeOptions &options = rclcpp::NodeOptions());
|
||||
|
||||
private:
|
||||
rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr sub;
|
||||
rclcpp::Publisher<visualization_msgs::msg::MarkerArray>::SharedPtr markerPub;
|
||||
rclcpp::Publisher<std_msgs::msg::Int32MultiArray>::SharedPtr objID_pub;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster0;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster1;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster2;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster3;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster4;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub_cluster5;
|
||||
|
||||
std::vector<geometry_msgs::msg::Point> prevClusterCenters;
|
||||
|
||||
std::vector<int> objID; // Output of the data association using KF
|
||||
// measurement.setTo(Scalar(0));
|
||||
|
||||
bool firstFrame = true;
|
||||
rclcpp::Clock::SharedPtr clock_;
|
||||
std::string frame_id;
|
||||
std::string filtered_cloud;
|
||||
|
||||
double euclidean_distance(geometry_msgs::msg::Point &p1, geometry_msgs::msg::Point &p2);
|
||||
std::pair<int, int> findIndexOfMin(std::vector<std::vector<float>> distMat);
|
||||
void KFT(const std_msgs::msg::Float32MultiArray ccs);
|
||||
void publish_cloud(rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub,
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr cluster);
|
||||
|
||||
void parse_cloud(const sensor_msgs::msg::PointCloud2::SharedPtr input,
|
||||
std::vector<std::pair<pcl::PointCloud<pcl::PointXYZI>::Ptr, float>> &cluster_vec,
|
||||
std::vector<pcl::PointXYZI> &clusterCentroids);
|
||||
void cloud_cb(const sensor_msgs::msg::PointCloud2::SharedPtr input);
|
||||
};
|
||||
|
||||
}
|
||||
#endif // CLOUD_CLUSTERING_HPP
|
||||
66
src/target_tracking/include/hungarian.hpp
Normal file
66
src/target_tracking/include/hungarian.hpp
Normal file
@@ -0,0 +1,66 @@
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
#include <algorithm>
|
||||
|
||||
class Hungarian {
|
||||
public:
|
||||
Hungarian(const std::vector<std::vector<float>>& costMatrix)
|
||||
: n(costMatrix.size()), m(costMatrix[0].size()),
|
||||
cost(costMatrix), u(n + 1), v(m + 1),
|
||||
p(m + 1), way(m + 1) {}
|
||||
|
||||
// Returns assignment vector: assignment[i] = j
|
||||
std::vector<int> solve() {
|
||||
for (int i = 1; i <= n; i++) {
|
||||
p[0] = i;
|
||||
int j0 = 0;
|
||||
std::vector<float> minv(m + 1, std::numeric_limits<float>::max());
|
||||
std::vector<char> used(m + 1, false);
|
||||
do {
|
||||
used[j0] = true;
|
||||
int i0 = p[j0], j1 = 0;
|
||||
float delta = std::numeric_limits<float>::max();
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (!used[j]) {
|
||||
float cur = cost[i0 - 1][j - 1] - u[i0] - v[j];
|
||||
if (cur < minv[j]) {
|
||||
minv[j] = cur;
|
||||
way[j] = j0;
|
||||
}
|
||||
if (minv[j] < delta) {
|
||||
delta = minv[j];
|
||||
j1 = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j <= m; j++) {
|
||||
if (used[j]) {
|
||||
u[p[j]] += delta;
|
||||
v[j] -= delta;
|
||||
} else {
|
||||
minv[j] -= delta;
|
||||
}
|
||||
}
|
||||
j0 = j1;
|
||||
} while (p[j0] != 0);
|
||||
do {
|
||||
int j1 = way[j0];
|
||||
p[j0] = p[j1];
|
||||
j0 = j1;
|
||||
} while (j0);
|
||||
}
|
||||
std::vector<int> assignment(n, -1);
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (p[j] != 0) {
|
||||
assignment[p[j] - 1] = j - 1;
|
||||
}
|
||||
}
|
||||
return assignment;
|
||||
}
|
||||
|
||||
private:
|
||||
int n, m;
|
||||
std::vector<std::vector<float>> cost;
|
||||
std::vector<float> u, v;
|
||||
std::vector<int> p, way;
|
||||
};
|
||||
81
src/target_tracking/launch/target_tracking_launch.py
Normal file
81
src/target_tracking/launch/target_tracking_launch.py
Normal file
@@ -0,0 +1,81 @@
|
||||
from launch import LaunchDescription
|
||||
from launch_ros.actions import Node
|
||||
import math
|
||||
|
||||
################### user configure parameters for ros2 start ###################
|
||||
# Topics/Frames
|
||||
frame_id = 'velodyne'
|
||||
topic_preprocessing_in = 'filtered_points'
|
||||
topic_preprocessing_out = 'new_filtered'
|
||||
|
||||
# Preprocessing
|
||||
x_min = 0.0
|
||||
x_max = 20.0
|
||||
z_min = -0.5
|
||||
z_max = 1.5
|
||||
tan_h_fov = math.pi / 4 # ±45°
|
||||
tan_v_fov = math.pi / 6 # ±30°
|
||||
|
||||
# Clustering
|
||||
z_dim_scale = 0.1
|
||||
cluster_tolerance = 0.3
|
||||
min_cluster_size = 10
|
||||
max_cluster_size = 1000
|
||||
min_width = 0.0
|
||||
min_height = 0.0
|
||||
min_length = 0.0
|
||||
max_width = 1.5
|
||||
max_height = 2.5
|
||||
max_length = 1.5
|
||||
|
||||
################### user configure parameters for ros2 end #####################
|
||||
|
||||
cloud_preprocessing_params = [
|
||||
{"topic_in": topic_preprocessing_in},
|
||||
{"topic_out": topic_preprocessing_out},
|
||||
{"x_min": x_min},
|
||||
{"x_max": x_max},
|
||||
{"z_min": z_min},
|
||||
{"z_max": z_max},
|
||||
{"tan_h_fov": tan_h_fov},
|
||||
{"tan_v_fov": tan_v_fov}
|
||||
]
|
||||
|
||||
cloud_clustering_params = [
|
||||
{"topic_in": topic_preprocessing_out},
|
||||
{"frame_id": frame_id},
|
||||
{"z_dim_scale": z_dim_scale},
|
||||
{"cluster_tolerance": cluster_tolerance},
|
||||
{"min_cluster_size": min_cluster_size},
|
||||
{"max_cluster_size": max_cluster_size},
|
||||
{"min_width": min_width},
|
||||
{"min_height": min_height},
|
||||
{"min_length": min_length},
|
||||
{"max_width": max_width},
|
||||
{"max_height": max_height},
|
||||
{"max_length": max_length}
|
||||
]
|
||||
|
||||
def generate_launch_description():
|
||||
return LaunchDescription([
|
||||
Node(
|
||||
package='target_tracking',
|
||||
executable='cloud_preprocessing_node',
|
||||
name='cloud_preprocessing',
|
||||
parameters=cloud_preprocessing_params,
|
||||
output={
|
||||
'stdout': 'screen',
|
||||
'stderr': 'screen',
|
||||
}
|
||||
),
|
||||
Node(
|
||||
package='target_tracking',
|
||||
executable='cloud_clustering_node',
|
||||
name='cloud_clustering',
|
||||
parameters=cloud_clustering_params,
|
||||
output={
|
||||
'stdout': 'screen',
|
||||
'stderr': 'screen',
|
||||
}
|
||||
)
|
||||
])
|
||||
27
src/target_tracking/package.xml
Normal file
27
src/target_tracking/package.xml
Normal file
@@ -0,0 +1,27 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>target_tracking</name>
|
||||
<version>1.0.1</version>
|
||||
<description>Studienprojekt</description>
|
||||
<maintainer email="liam20030625@gmail.com">Liam</maintainer>
|
||||
<license>Apache 2.0</license>
|
||||
|
||||
<buildtool_depend>ament_cmake</buildtool_depend>
|
||||
|
||||
<test_depend>ament_lint_auto</test_depend>
|
||||
<test_depend>ament_lint_common</test_depend>
|
||||
|
||||
<!-- Dependencies for voxel -->
|
||||
<depend>rclcpp</depend>
|
||||
<depend>sensor_msgs</depend>
|
||||
<depend>visualization_msgs</depend>
|
||||
<depend>pcl_conversions</depend>
|
||||
<depend>PCL</depend>
|
||||
<depend>cv_bridge</depend>
|
||||
<depend>OpenCV</depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_cmake</build_type>
|
||||
</export>
|
||||
</package>
|
||||
691
src/target_tracking/src/cloud_clustering.cpp
Normal file
691
src/target_tracking/src/cloud_clustering.cpp
Normal file
@@ -0,0 +1,691 @@
|
||||
// Default C++ imports
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
#include <string.h>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
|
||||
// Headerfiles of project
|
||||
#include "cloud_clustering.hpp"
|
||||
#include <hungarian.hpp>
|
||||
|
||||
// Ros2 import
|
||||
#include <rclcpp/rclcpp.hpp>
|
||||
|
||||
#include <opencv2/video/video.hpp>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
|
||||
// PCL Types
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
|
||||
// Ros2 messages
|
||||
#include <std_msgs/msg/float32_multi_array.hpp>
|
||||
#include <std_msgs/msg/int32_multi_array.hpp>
|
||||
#include <geometry_msgs/msg/point.hpp>
|
||||
#include <sensor_msgs/msg/point_cloud2.hpp>
|
||||
#include <visualization_msgs/msg/marker.hpp>
|
||||
#include <visualization_msgs/msg/marker_array.hpp>
|
||||
|
||||
#include <pcl/io/pcd_io.h>
|
||||
#include <pcl/common/centroid.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
|
||||
namespace cloud_clustering
|
||||
{
|
||||
static const rclcpp::Logger LOGGER = rclcpp::get_logger("cloud_clustering");
|
||||
|
||||
CloudClustering::CloudClustering(
|
||||
const rclcpp::NodeOptions &options) : CloudClustering("", options)
|
||||
{
|
||||
}
|
||||
|
||||
CloudClustering::CloudClustering(
|
||||
const std::string &name_space,
|
||||
const rclcpp::NodeOptions &options) : Node("CloudClustering", name_space, options)
|
||||
{
|
||||
// Topic parameters
|
||||
this->declare_parameter<std::string>("topic_in", "filtered_points");
|
||||
this->declare_parameter<std::string>("frame_id", "velodyne");
|
||||
|
||||
// Cluster parameters
|
||||
this->declare_parameter<float>("z_dim_scale", 0);
|
||||
this->declare_parameter<float>("cluster_tolerance", 0.0f);
|
||||
this->declare_parameter<int>("min_cluster_size", 0);
|
||||
this->declare_parameter<int>("max_cluster_size", 0);
|
||||
this->declare_parameter<float>("min_width", 0.0f);
|
||||
this->declare_parameter<float>("min_height", 0.0f);
|
||||
this->declare_parameter<float>("min_length", 0.0f);
|
||||
this->declare_parameter<float>("max_width", 0.0f);
|
||||
this->declare_parameter<float>("max_height", 0.0f);
|
||||
this->declare_parameter<float>("max_length", 0.0f);
|
||||
|
||||
this->get_parameter("topic_in", topic_in);
|
||||
this->get_parameter("frame_id", frame_id);
|
||||
this->get_parameter("z_dim_scale", z_dim_scale);
|
||||
this->get_parameter("cluster_tolerance", cluster_tolerance);
|
||||
this->get_parameter("min_cluster_size", min_cluster_size);
|
||||
this->get_parameter("max_cluster_size", max_cluster_size);
|
||||
this->get_parameter("min_width", min_width);
|
||||
this->get_parameter("min_height", min_height);
|
||||
this->get_parameter("min_length", min_length);
|
||||
this->get_parameter("max_width", max_width);
|
||||
this->get_parameter("max_height", max_height);
|
||||
this->get_parameter("max_length", max_length);
|
||||
|
||||
// Initialize publishers
|
||||
objID_pub = this->create_publisher<std_msgs::msg::Int32MultiArray>("object_ids", 10);
|
||||
pub_cluster0 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster0", 10);
|
||||
pub_cluster1 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster1", 10);
|
||||
pub_cluster2 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster2", 10);
|
||||
pub_cluster3 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster3", 10);
|
||||
pub_cluster4 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster4", 10);
|
||||
pub_cluster5 = this->create_publisher<sensor_msgs::msg::PointCloud2>("cluster5", 10);
|
||||
markerPub = this->create_publisher<visualization_msgs::msg::MarkerArray>("markers", 10);
|
||||
|
||||
RCLCPP_INFO(this->get_logger(), "About to setup callback");
|
||||
clock_ = this->get_clock();
|
||||
|
||||
// Create a ROS subscriber for the input point cloud
|
||||
sub = this->create_subscription<sensor_msgs::msg::PointCloud2>(
|
||||
topic_in,
|
||||
10, // queue size
|
||||
std::bind(&CloudClustering::cloud_cb, this, std::placeholders::_1));
|
||||
|
||||
std::cout << "Started clustering node with parameters:\n"
|
||||
<< "topic_in: " << topic_in << "\n"
|
||||
<< "frame_id: " << frame_id << "\n"
|
||||
<< "z_dim_scale: " << z_dim_scale << "\n"
|
||||
<< "cluster_tolerance: " << cluster_tolerance << "\n"
|
||||
<< "min_cluster_size: " << min_cluster_size << "\n"
|
||||
<< "max_cluster_size: " << max_cluster_size << "\n";
|
||||
}
|
||||
|
||||
// calculate euclidean distance of two points
|
||||
double CloudClustering::euclidean_distance(geometry_msgs::msg::Point &p1, geometry_msgs::msg::Point &p2)
|
||||
{
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) +
|
||||
(p1.z - p2.z) * (p1.z - p2.z) * z_dim_scale);
|
||||
}
|
||||
/*
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to
|
||||
two KF_Trackers. int countIDs(vector<int> v)
|
||||
{
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n =
|
||||
distance(v.end(), v.begin()) sort(v.begin(), v.end()); // Average case O(n log
|
||||
n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then
|
||||
sort_heap.
|
||||
|
||||
// Unique will take a sorted range, and move things around to get duplicated
|
||||
// items to the back and returns an iterator to the end of the unique
|
||||
section of the range auto unique_end = unique(v.begin(), v.end()); // Again n
|
||||
comparisons return distance(unique_end, v.begin()); // Constant time for random
|
||||
access iterators (like vector's)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
objID: vector containing the IDs of the clusters that should be associated with
|
||||
each KF_Tracker objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
|
||||
std::pair<int, int> CloudClustering::findIndexOfMin(std::vector<std::vector<float>> distMat)
|
||||
{
|
||||
std::pair<int, int> minIndex;
|
||||
float minEl = std::numeric_limits<float>::max();
|
||||
for (int i = 0; i < distMat.size(); i++)
|
||||
for (int j = 0; j < distMat.at(0).size(); j++)
|
||||
{
|
||||
if (distMat[i][j] < minEl)
|
||||
{
|
||||
minEl = distMat[i][j];
|
||||
minIndex = std::make_pair(i, j);
|
||||
}
|
||||
}
|
||||
return minIndex;
|
||||
}
|
||||
|
||||
void CloudClustering::KFT(const std_msgs::msg::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
|
||||
std::vector<cv::Mat> pred{KF0.predict(), KF1.predict(), KF2.predict(),
|
||||
KF3.predict(), KF4.predict(), KF5.predict()};
|
||||
|
||||
// cv::Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
|
||||
// cout<<"Prediction 1
|
||||
// ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
|
||||
// Get measurements
|
||||
// Extract the position of the clusters forom the multiArray. To check if the
|
||||
// data coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
std::vector<geometry_msgs::msg::Point> clusterCenters; // clusterCenters
|
||||
|
||||
int i = 0;
|
||||
for (std::vector<float>::const_iterator it = ccs.data.begin();
|
||||
it != ccs.data.end(); it += 3)
|
||||
{
|
||||
geometry_msgs::msg::Point pt;
|
||||
pt.x = *it;
|
||||
pt.y = *(it + 1);
|
||||
pt.z = *(it + 2);
|
||||
|
||||
clusterCenters.push_back(pt);
|
||||
}
|
||||
|
||||
std::vector<geometry_msgs::msg::Point> KFpredictions;
|
||||
i = 0;
|
||||
for (auto it = pred.begin(); it != pred.end(); it++)
|
||||
{
|
||||
geometry_msgs::msg::Point pt;
|
||||
pt.x = (*it).at<float>(0);
|
||||
pt.y = (*it).at<float>(1);
|
||||
pt.z = (*it).at<float>(2);
|
||||
|
||||
KFpredictions.push_back(pt);
|
||||
}
|
||||
|
||||
// Find the cluster that is more probable to be belonging to a given KF.
|
||||
objID.clear(); // Clear the objID vector
|
||||
objID.resize(6); // Allocate default elements so that [i] doesnt segfault.
|
||||
// Should be done better
|
||||
// Copy clusterCentres for modifying it and preventing multiple assignments of
|
||||
// the same ID
|
||||
std::vector<geometry_msgs::msg::Point> copyOfClusterCenters(clusterCenters);
|
||||
std::vector<std::vector<float>> distMat;
|
||||
|
||||
for (int filterN = 0; filterN < 6; filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for (int n = 0; n < 6; n++)
|
||||
{
|
||||
distVec.push_back(
|
||||
euclidean_distance(KFpredictions[filterN], copyOfClusterCenters[n]));
|
||||
}
|
||||
|
||||
distMat.push_back(distVec);
|
||||
/*// Based on distVec instead of distMat (global min). Has problems with the
|
||||
person's leg going out of scope int
|
||||
ID=std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end()));
|
||||
//cout<<"finterlN="<<filterN<<" minID="<<ID
|
||||
objID.push_back(ID);
|
||||
// Prevent assignment of the same object ID to multiple clusters
|
||||
copyOfClusterCenters[ID].x=100000;// A large value so that this center is
|
||||
not assigned to another cluster copyOfClusterCenters[ID].y=10000;
|
||||
copyOfClusterCenters[ID].z=10000;
|
||||
*/
|
||||
// cout << "filterN=" << filterN << "\n";
|
||||
}
|
||||
|
||||
Hungarian hungarian(distMat);
|
||||
std::vector<int> assignment = hungarian.solve();
|
||||
|
||||
for (int i = 0; i < assignment.size(); i++) {
|
||||
objID[i] = assignment[i];
|
||||
}
|
||||
|
||||
/*
|
||||
for (int clusterCount = 0; clusterCount < 6; clusterCount++)
|
||||
{
|
||||
// 1. Find min(distMax)==> (i,j);
|
||||
std::pair<int, int> minIndex(findIndexOfMin(distMat));
|
||||
// 2. objID[i]=clusterCenters[j]; counter++
|
||||
objID[minIndex.first] = minIndex.second;
|
||||
|
||||
// 3. distMat[i,:]=10000; distMat[:,j]=10000
|
||||
distMat[minIndex.first] =
|
||||
std::vector<float>(6, 10000.0); // Set the row to a high number.
|
||||
for (int row = 0; row < distMat.size();
|
||||
row++) // set the column to a high number
|
||||
{
|
||||
distMat[row][minIndex.second] = 10000.0;
|
||||
}
|
||||
// 4. if(counter<6) got to 1.
|
||||
// cout << "clusterCount=" << clusterCount << "\n";
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
// cout<<"Got object IDs"<<"\n";
|
||||
// countIDs(objID);// for verif/corner cases
|
||||
|
||||
// display objIDs
|
||||
/* DEBUG
|
||||
cout<<"objID= ";
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
cout<<*it<<" ,";
|
||||
cout<<"\n";
|
||||
*/
|
||||
|
||||
visualization_msgs::msg::MarkerArray clusterMarkers;
|
||||
|
||||
for (int i = 0; i < 6; i++)
|
||||
{
|
||||
visualization_msgs::msg::Marker m;
|
||||
|
||||
m.id = i;
|
||||
m.type = visualization_msgs::msg::Marker::CUBE;
|
||||
m.header.frame_id = frame_id;
|
||||
m.scale.x = 0.3;
|
||||
m.scale.y = 0.3;
|
||||
m.scale.z = 0.3;
|
||||
m.action = visualization_msgs::msg::Marker::ADD;
|
||||
m.color.a = 1.0;
|
||||
m.color.r = i % 2 ? 1 : 0;
|
||||
m.color.g = i % 3 ? 1 : 0;
|
||||
m.color.b = i % 4 ? 1 : 0;
|
||||
|
||||
// geometry_msgs::msg::Point clusterC(clusterCenters.at(objID[i]));
|
||||
geometry_msgs::msg::Point clusterC(KFpredictions[i]);
|
||||
m.pose.position.x = clusterC.x;
|
||||
m.pose.position.y = clusterC.y;
|
||||
m.pose.position.z = clusterC.z;
|
||||
|
||||
clusterMarkers.markers.push_back(m);
|
||||
}
|
||||
|
||||
prevClusterCenters = clusterCenters;
|
||||
|
||||
markerPub->publish(clusterMarkers);
|
||||
|
||||
std_msgs::msg::Int32MultiArray obj_id;
|
||||
for (auto it = objID.begin(); it != objID.end(); it++)
|
||||
obj_id.data.push_back(*it);
|
||||
// Publish the object IDs
|
||||
objID_pub->publish(obj_id);
|
||||
// convert clusterCenters from geometry_msgs::msg::Point to floats
|
||||
std::vector<std::vector<float>> cc;
|
||||
for (int i = 0; i < 6; i++)
|
||||
{
|
||||
std::vector<float> pt;
|
||||
pt.push_back(clusterCenters[objID[i]].x);
|
||||
pt.push_back(clusterCenters[objID[i]].y);
|
||||
pt.push_back(clusterCenters[objID[i]].z);
|
||||
|
||||
cc.push_back(pt);
|
||||
}
|
||||
// cout<<"cc[5][0]="<<cc[5].at(0)<<"cc[5][1]="<<cc[5].at(1)<<"cc[5][2]="<<cc[5].at(2)<<"\n";
|
||||
float meas0[2] = {cc[0].at(0), cc[0].at(1)};
|
||||
float meas1[2] = {cc[1].at(0), cc[1].at(1)};
|
||||
float meas2[2] = {cc[2].at(0), cc[2].at(1)};
|
||||
float meas3[2] = {cc[3].at(0), cc[3].at(1)};
|
||||
float meas4[2] = {cc[4].at(0), cc[4].at(1)};
|
||||
float meas5[2] = {cc[5].at(0), cc[5].at(1)};
|
||||
|
||||
// The update phase
|
||||
cv::Mat meas0Mat = cv::Mat(2, 1, CV_32F, meas0);
|
||||
cv::Mat meas1Mat = cv::Mat(2, 1, CV_32F, meas1);
|
||||
cv::Mat meas2Mat = cv::Mat(2, 1, CV_32F, meas2);
|
||||
cv::Mat meas3Mat = cv::Mat(2, 1, CV_32F, meas3);
|
||||
cv::Mat meas4Mat = cv::Mat(2, 1, CV_32F, meas4);
|
||||
cv::Mat meas5Mat = cv::Mat(2, 1, CV_32F, meas5);
|
||||
|
||||
// cout<<"meas0Mat"<<meas0Mat<<"\n";
|
||||
if (!(meas0Mat.at<float>(0, 0) == 0.0f || meas0Mat.at<float>(1, 0) == 0.0f))
|
||||
cv::Mat estimated0 = KF0.correct(meas0Mat);
|
||||
if (!(meas1[0] == 0.0f || meas1[1] == 0.0f))
|
||||
cv::Mat estimated1 = KF1.correct(meas1Mat);
|
||||
if (!(meas2[0] == 0.0f || meas2[1] == 0.0f))
|
||||
cv::Mat estimated2 = KF2.correct(meas2Mat);
|
||||
if (!(meas3[0] == 0.0f || meas3[1] == 0.0f))
|
||||
cv::Mat estimated3 = KF3.correct(meas3Mat);
|
||||
if (!(meas4[0] == 0.0f || meas4[1] == 0.0f))
|
||||
cv::Mat estimated4 = KF4.correct(meas4Mat);
|
||||
if (!(meas5[0] == 0.0f || meas5[1] == 0.0f))
|
||||
cv::Mat estimated5 = KF5.correct(meas5Mat);
|
||||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
// cout<<"estimate="<<estimated.at<float>(0)<<","<<estimated.at<float>(1)<<"\n";
|
||||
// Point statePt(estimated.at<float>(0),estimated.at<float>(1));
|
||||
// cout<<"DONE KF_TRACKER\n";
|
||||
}
|
||||
void CloudClustering::publish_cloud(
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr pub,
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr cluster)
|
||||
{
|
||||
// Create a PointCloud2 message
|
||||
auto clustermsg = std::make_shared<sensor_msgs::msg::PointCloud2>();
|
||||
|
||||
// Convert PCL cloud to ROS 2 message
|
||||
pcl::toROSMsg(*cluster, *clustermsg);
|
||||
|
||||
// Set header info
|
||||
clustermsg->header.frame_id = frame_id;
|
||||
clustermsg->header.stamp = clock_->now();
|
||||
|
||||
// Publish the message
|
||||
pub->publish(*clustermsg);
|
||||
}
|
||||
|
||||
void CloudClustering::parse_cloud(const sensor_msgs::msg::PointCloud2::SharedPtr input,
|
||||
std::vector<std::pair<pcl::PointCloud<pcl::PointXYZI>::Ptr, float>> &cluster_vec,
|
||||
std::vector<pcl::PointXYZI> &clusterCentroids)
|
||||
{
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr input_cloud(new pcl::PointCloud<pcl::PointXYZI>);
|
||||
pcl::fromROSMsg(*input, *input_cloud);
|
||||
|
||||
// Setup KdTree
|
||||
pcl::search::KdTree<pcl::PointXYZI>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZI>);
|
||||
tree->setInputCloud(input_cloud);
|
||||
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZI> ec;
|
||||
ec.setClusterTolerance(cluster_tolerance);
|
||||
ec.setMinClusterSize(min_cluster_size);
|
||||
ec.setMaxClusterSize(max_cluster_size);
|
||||
ec.setSearchMethod(tree);
|
||||
ec.setInputCloud(input_cloud);
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract(cluster_indices);
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
|
||||
for (it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
|
||||
{
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZI>);
|
||||
float x = 0.0;
|
||||
float y = 0.0;
|
||||
int numPts = 0;
|
||||
float intensity_sum = 0.0;
|
||||
|
||||
float min_x = std::numeric_limits<float>::max();
|
||||
float min_y = std::numeric_limits<float>::max();
|
||||
float min_z = std::numeric_limits<float>::max();
|
||||
float max_x = -std::numeric_limits<float>::max();
|
||||
float max_y = -std::numeric_limits<float>::max();
|
||||
float max_z = -std::numeric_limits<float>::max();
|
||||
|
||||
for (pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
auto &pt = input_cloud->points[*pit];
|
||||
cloud_cluster->points.push_back(pt);
|
||||
x += pt.x;
|
||||
y += pt.y;
|
||||
numPts++;
|
||||
|
||||
intensity_sum += input_cloud->points[*pit].intensity;
|
||||
// dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
// mindist_this_cluster = std::min(dist_this_point,
|
||||
// mindist_this_cluster);
|
||||
|
||||
min_x = std::min(min_x, pt.x);
|
||||
min_y = std::min(min_y, pt.y);
|
||||
min_z = std::min(min_z, pt.z);
|
||||
max_x = std::max(max_x, pt.x);
|
||||
max_y = std::max(max_y, pt.y);
|
||||
max_z = std::max(max_z, pt.z);
|
||||
}
|
||||
|
||||
if (numPts == 0)
|
||||
continue;
|
||||
|
||||
|
||||
float width = max_x - min_x;
|
||||
float length = max_y - min_y;
|
||||
float height = max_z - min_z;
|
||||
|
||||
// Reject clusters outside size limits
|
||||
if (width < min_width || width > max_width ||
|
||||
height < min_height || height > max_height ||
|
||||
length < min_length || length > max_length)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
|
||||
|
||||
pcl::PointXYZI centroid;
|
||||
centroid.x = x / numPts;
|
||||
centroid.y = y / numPts;
|
||||
centroid.z = 0.0;
|
||||
|
||||
cluster_vec.push_back(std::make_pair(cloud_cluster, intensity_sum / numPts));
|
||||
|
||||
// Get the centroid of the cluster
|
||||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
|
||||
// Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6)
|
||||
{
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr empty_cluster(
|
||||
new pcl::PointCloud<pcl::PointXYZI>);
|
||||
|
||||
pcl::PointXYZI pt;
|
||||
pt.x = pt.y = pt.z = pt.intensity = 0.0f;
|
||||
|
||||
empty_cluster->points.push_back(pt);
|
||||
|
||||
pcl::PointXYZI centroid;
|
||||
centroid.x = 0.0;
|
||||
centroid.y = 0.0;
|
||||
centroid.z = 0.0;
|
||||
centroid.intensity = 0.0;
|
||||
|
||||
cluster_vec.push_back(std::make_pair(empty_cluster, 0.0f));
|
||||
}
|
||||
|
||||
while (clusterCentroids.size() < 6)
|
||||
{
|
||||
pcl::PointXYZI centroid;
|
||||
centroid.x = 0.0;
|
||||
centroid.y = 0.0;
|
||||
centroid.z = 0.0;
|
||||
centroid.intensity = 0.0;
|
||||
|
||||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
}
|
||||
|
||||
void CloudClustering::cloud_cb(const sensor_msgs::msg::PointCloud2::SharedPtr input)
|
||||
|
||||
{
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<std::pair<pcl::PointCloud<pcl::PointXYZI>::Ptr, float>> cluster_vec;
|
||||
// Cluster centroids
|
||||
std::vector<pcl::PointXYZI> clusterCentroids;
|
||||
|
||||
if (firstFrame)
|
||||
{
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object
|
||||
// is detected
|
||||
|
||||
float dvx = 0.01f; // 1.0
|
||||
float dvy = 0.01f; // 1.0
|
||||
float dx = 1.0f;
|
||||
float dy = 1.0f;
|
||||
KF0.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF1.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF2.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF3.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF4.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
KF5.transitionMatrix = (cv::Mat_<float>(4, 4) << dx, 0, 1, 0, 0, dy, 0, 1, 0, 0,
|
||||
dvx, 0, 0, 0, 0, dvy);
|
||||
|
||||
cv::setIdentity(KF0.measurementMatrix);
|
||||
cv::setIdentity(KF1.measurementMatrix);
|
||||
cv::setIdentity(KF2.measurementMatrix);
|
||||
cv::setIdentity(KF3.measurementMatrix);
|
||||
cv::setIdentity(KF4.measurementMatrix);
|
||||
cv::setIdentity(KF5.measurementMatrix);
|
||||
// Process Noise Covariance Matrix Q
|
||||
// [ Ex 0 0 0 0 0 ]
|
||||
// [ 0 Ey 0 0 0 0 ]
|
||||
// [ 0 0 Ev_x 0 0 0 ]
|
||||
// [ 0 0 0 1 Ev_y 0 ]
|
||||
//// [ 0 0 0 0 1 Ew ]
|
||||
//// [ 0 0 0 0 0 Eh ]
|
||||
float sigmaP = 0.01;
|
||||
float sigmaQ = 0.1;
|
||||
setIdentity(KF0.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
setIdentity(KF1.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
setIdentity(KF2.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
setIdentity(KF3.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
setIdentity(KF4.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
setIdentity(KF5.processNoiseCov, cv::Scalar::all(sigmaP));
|
||||
// Meas noise cov matrix R
|
||||
cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(sigmaQ)); // 1e-1
|
||||
cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
|
||||
// Process the point cloud
|
||||
parse_cloud(input, cluster_vec, clusterCentroids);
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0) = clusterCentroids.at(0).x;
|
||||
KF0.statePre.at<float>(1) = clusterCentroids.at(0).y;
|
||||
KF0.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF0.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF1.statePre.at<float>(0) = clusterCentroids.at(1).x;
|
||||
KF1.statePre.at<float>(1) = clusterCentroids.at(1).y;
|
||||
KF1.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF1.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF2.statePre.at<float>(0) = clusterCentroids.at(2).x;
|
||||
KF2.statePre.at<float>(1) = clusterCentroids.at(2).y;
|
||||
KF2.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF2.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0) = clusterCentroids.at(3).x;
|
||||
KF3.statePre.at<float>(1) = clusterCentroids.at(3).y;
|
||||
KF3.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF3.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF4.statePre.at<float>(0) = clusterCentroids.at(4).x;
|
||||
KF4.statePre.at<float>(1) = clusterCentroids.at(4).y;
|
||||
KF4.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF4.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF5.statePre.at<float>(0) = clusterCentroids.at(5).x;
|
||||
KF5.statePre.at<float>(1) = clusterCentroids.at(5).y;
|
||||
KF5.statePre.at<float>(2) = 0; // initial v_x
|
||||
KF5.statePre.at<float>(3) = 0; // initial v_y
|
||||
|
||||
firstFrame = false;
|
||||
|
||||
for (int i = 0; i < 6; i++)
|
||||
{
|
||||
geometry_msgs::msg::Point pt;
|
||||
pt.x = clusterCentroids.at(i).x;
|
||||
pt.y = clusterCentroids.at(i).y;
|
||||
prevClusterCenters.push_back(pt);
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
parse_cloud(input, cluster_vec, clusterCentroids);
|
||||
|
||||
std_msgs::msg::Float32MultiArray cc;
|
||||
for (int i = 0; i < 6; i++)
|
||||
{
|
||||
cc.data.push_back(clusterCentroids.at(i).x);
|
||||
cc.data.push_back(clusterCentroids.at(i).y);
|
||||
cc.data.push_back(clusterCentroids.at(i).z);
|
||||
}
|
||||
|
||||
// cc_pos->publish(cc);// Publish cluster mid-points.
|
||||
KFT(cc);
|
||||
int i = 0;
|
||||
|
||||
//std::sort(objID.begin(), objID.end(), [cluster_vec](const int &a, const int &b)
|
||||
// { return cluster_vec[a].second < cluster_vec[b].second; });
|
||||
|
||||
std::vector<std::pair<int, float>> kf_intensity;
|
||||
|
||||
for (int i = 0; i < objID.size(); i++) {
|
||||
int cluster_index = objID[i];
|
||||
float mean_intensity = cluster_vec[cluster_index].second;
|
||||
kf_intensity.push_back(std::make_pair(i, mean_intensity));
|
||||
}
|
||||
|
||||
std::sort(kf_intensity.begin(), kf_intensity.end(),
|
||||
[](const auto &a, const auto &b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
for (auto &[kf_idx, intensity] : kf_intensity) {
|
||||
int cluster_index = objID[kf_idx];
|
||||
auto &cluster = cluster_vec[cluster_index].first;
|
||||
switch (i)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
publish_cloud(pub_cluster0, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
publish_cloud(pub_cluster1, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
publish_cloud(pub_cluster2, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
publish_cloud(pub_cluster3, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
publish_cloud(pub_cluster4, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
|
||||
case 5:
|
||||
{
|
||||
publish_cloud(pub_cluster5, cluster_vec[cluster_index].first);
|
||||
i++;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
17
src/target_tracking/src/cloud_clustering_node.cpp
Normal file
17
src/target_tracking/src/cloud_clustering_node.cpp
Normal file
@@ -0,0 +1,17 @@
|
||||
#include "cloud_clustering.hpp"
|
||||
|
||||
int main(int argc, char * argv[])
|
||||
{
|
||||
// Force flush of the stdout buffer.
|
||||
// This ensures a correct sync of all prints
|
||||
// even when executed simultaneously within a launch file.
|
||||
setvbuf(stdout, NULL, _IONBF, BUFSIZ);
|
||||
|
||||
rclcpp::init(argc, argv);
|
||||
const rclcpp::NodeOptions options;
|
||||
|
||||
rclcpp::spin(std::make_shared<cloud_clustering::CloudClustering>(options));
|
||||
|
||||
rclcpp::shutdown();
|
||||
return 0;
|
||||
}
|
||||
186
src/target_tracking/src/cloud_preprocessing.cpp
Normal file
186
src/target_tracking/src/cloud_preprocessing.cpp
Normal file
@@ -0,0 +1,186 @@
|
||||
#include <rclcpp/rclcpp.hpp>
|
||||
#include <sensor_msgs/msg/point_cloud2.hpp>
|
||||
|
||||
#include <tf2_ros/transform_listener.h>
|
||||
#include <tf2_ros/buffer.h>
|
||||
#include <tf2_sensor_msgs/tf2_sensor_msgs.hpp>
|
||||
#include <cmath>
|
||||
|
||||
#include <random>
|
||||
#include <chrono>
|
||||
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/ModelCoefficients.h>
|
||||
#include <pcl/io/pcd_io.h>
|
||||
|
||||
class CloudFilterNode : public rclcpp::Node
|
||||
{
|
||||
//Topic parameters
|
||||
std::string topic_in;
|
||||
std::string topic_out;
|
||||
|
||||
// Filter parameters
|
||||
float x_min;
|
||||
float x_max;
|
||||
float z_min;
|
||||
float z_max;
|
||||
float tan_h_fov;
|
||||
float tan_v_fov;
|
||||
|
||||
//Preallocate pointclouds
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr input {new pcl::PointCloud<pcl::PointXYZI>};
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr fov_filtered {new pcl::PointCloud<pcl::PointXYZI>};
|
||||
pcl::PointCloud<pcl::PointXYZI>::Ptr voxel_filtered {new pcl::PointCloud<pcl::PointXYZI>};
|
||||
|
||||
//Preallocate filter
|
||||
pcl::VoxelGrid<pcl::PointXYZI> voxel_filter;
|
||||
|
||||
public:
|
||||
CloudFilterNode()
|
||||
: Node("cloud_preprocessing"), tf_buffer_(this->get_clock()), tf_listener_(tf_buffer_)
|
||||
{
|
||||
|
||||
//Topic parameters
|
||||
this->declare_parameter<std::string>("topic_in", "test");
|
||||
this->declare_parameter<std::string>("topic_out", "test2");
|
||||
|
||||
//Filter parameters
|
||||
this->declare_parameter<float>("x_min", 0.0f);
|
||||
this->declare_parameter<float>("x_max", 0.0f);
|
||||
this->declare_parameter<float>("z_min", 0.0f);
|
||||
this->declare_parameter<float>("z_max", 0.0f);
|
||||
this->declare_parameter<float>("tan_h_fov", 0.0f); // ±45°
|
||||
this->declare_parameter<float>("tan_v_fov", 0.0f); // ±30°
|
||||
|
||||
this->get_parameter("topic_in", topic_in);
|
||||
this->get_parameter("topic_out", topic_out);
|
||||
|
||||
this->get_parameter("x_min", x_min);
|
||||
this->get_parameter("x_max", x_max);
|
||||
this->get_parameter("z_min", z_min);
|
||||
this->get_parameter("z_max", z_max);
|
||||
this->get_parameter("tan_h_fov", tan_h_fov);
|
||||
this->get_parameter("tan_v_fov", tan_v_fov);
|
||||
|
||||
voxel_filter.setLeafSize(0.03f, 0.03f, 0.03f); // Adjust as needed
|
||||
|
||||
RCLCPP_INFO(this->get_logger(), "Starting filter node with parameters:\n"
|
||||
"topic_in: %s\n"
|
||||
"topic_out: %s\n"
|
||||
"x_min: %f\n"
|
||||
"x_max: %f\n"
|
||||
"z_min: %f\n"
|
||||
"z_max: %f\n"
|
||||
"tan_h_fov: %f\n"
|
||||
"tan_v_fov: %f"
|
||||
, topic_in.c_str(), topic_out.c_str(), x_min, x_max, z_min, z_max, tan_h_fov, tan_v_fov
|
||||
);
|
||||
|
||||
subscription_ = this->create_subscription<sensor_msgs::msg::PointCloud2>(
|
||||
topic_in, rclcpp::SensorDataQoS(),
|
||||
std::bind(&CloudFilterNode::cloud_callback, this, std::placeholders::_1));
|
||||
|
||||
filtered_publisher_ = this->create_publisher<sensor_msgs::msg::PointCloud2>(topic_out, 10);
|
||||
}
|
||||
|
||||
private:
|
||||
void cloud_callback(const sensor_msgs::msg::PointCloud2::SharedPtr msg)
|
||||
{
|
||||
//auto start = std::chrono::high_resolution_clock::now();
|
||||
//Clear all pointclouds
|
||||
input->clear();
|
||||
fov_filtered->clear();
|
||||
voxel_filtered->clear();
|
||||
|
||||
// Convert to PCL
|
||||
pcl::fromROSMsg(*msg, *input);
|
||||
|
||||
fov_filtered->reserve(input->size());
|
||||
|
||||
for (const auto& point : input->points)
|
||||
{
|
||||
if (point.x < x_min || point.x > x_max) continue;
|
||||
if (std::isnan(point.x) || std::isnan(point.y) || std::isnan(point.z)) continue;
|
||||
if (point.z < z_min || point.z > z_max) continue;
|
||||
|
||||
float inv_x = 1.0f / point.x;
|
||||
if (fabsf(point.y * inv_x) > tan_h_fov) continue;
|
||||
if (fabsf(point.z * inv_x) > tan_v_fov) continue;
|
||||
|
||||
fov_filtered->push_back(point);
|
||||
}
|
||||
|
||||
// Apply voxel grid filter
|
||||
voxel_filter.setInputCloud(fov_filtered);
|
||||
voxel_filter.filter(*voxel_filtered);
|
||||
|
||||
//Apply ransac
|
||||
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
|
||||
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
|
||||
// Create the segmentation object
|
||||
pcl::SACSegmentation<pcl::PointXYZI> seg;
|
||||
// Optional
|
||||
seg.setOptimizeCoefficients(true);
|
||||
// Mandatory
|
||||
seg.setModelType(pcl::SACMODEL_PLANE);
|
||||
seg.setMethodType(pcl::SAC_RANSAC);
|
||||
seg.setDistanceThreshold(0.02);
|
||||
seg.setMaxIterations(200);
|
||||
|
||||
seg.setInputCloud(voxel_filtered);
|
||||
seg.segment (*inliers, *coefficients);
|
||||
|
||||
if (inliers->indices.size () == 0)
|
||||
{
|
||||
RCLCPP_INFO(this->get_logger(), "Oh oh. No inliers");
|
||||
return;
|
||||
}
|
||||
|
||||
//Select remaining points
|
||||
pcl::ExtractIndices<pcl::PointXYZI> extract;
|
||||
extract.setInputCloud(voxel_filtered);
|
||||
extract.setIndices(inliers);
|
||||
extract.setNegative(true);
|
||||
extract.filter(*voxel_filtered);
|
||||
|
||||
// Convert and publish
|
||||
sensor_msgs::msg::PointCloud2 out_msg;
|
||||
pcl::toROSMsg(*voxel_filtered, out_msg);
|
||||
out_msg.header.stamp = this->get_clock()->now();
|
||||
out_msg.header.frame_id = msg->header.frame_id;
|
||||
filtered_publisher_->publish(out_msg);
|
||||
|
||||
//RCLCPP_INFO(this->get_logger(), "Filtered %zu -> %zu points", input->points.size(), voxel_filtered->points.size());
|
||||
//auto stop = std::chrono::high_resolution_clock::now();
|
||||
//auto duration = std::chrono::duration_cast<std::chrono::microseconds>(stop - start);
|
||||
|
||||
// To get the value of duration use the count()
|
||||
// member function on the duration object
|
||||
//std::cout << duration.count() << std::endl;
|
||||
|
||||
}
|
||||
|
||||
tf2_ros::Buffer tf_buffer_;
|
||||
tf2_ros::TransformListener tf_listener_;
|
||||
|
||||
rclcpp::Subscription<sensor_msgs::msg::PointCloud2>::SharedPtr subscription_;
|
||||
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr filtered_publisher_;
|
||||
rclcpp::Publisher<sensor_msgs::msg::PointCloud2>::SharedPtr original_publisher_;
|
||||
};
|
||||
|
||||
int main(int argc, char * argv[])
|
||||
{
|
||||
srand((unsigned int) time (NULL));
|
||||
rclcpp::init(argc, argv);
|
||||
rclcpp::spin(std::make_shared<CloudFilterNode>());
|
||||
rclcpp::shutdown();
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user