Files
sherpa_ros2_ws/scripts/calibrate_lidar.py
2025-08-16 19:45:27 +02:00

232 lines
8.3 KiB
Python

import rclpy
from rclpy.node import Node
from rclpy.executors import MultiThreadedExecutor
from sensor_msgs.msg import PointCloud2
from geometry_msgs.msg import TransformStamped
import sensor_msgs_py.point_cloud2 as pc2
from tf2_ros import StaticTransformBroadcaster
import numpy as np
import matplotlib.pyplot as plt
import struct
from io import BytesIO
import threading
import time
import open3d as o3d
from scipy.spatial.transform import Rotation as R
class PointCloudSaver(Node):
def __init__(self, node_name: str, pointcloud_topic: str, buffer, timeout_ms: int):
super().__init__(node_name)
self.subscription = self.create_subscription(
PointCloud2,
pointcloud_topic,
self.callback,
10
)
self.buffer = buffer
self.finished = False
self.points = []
self.end_time = self.get_clock().now().nanoseconds + (timeout_ms * 1_000_000)
self.cmap = plt.get_cmap('jet')
def callback(self, msg):
now = self.get_clock().now().nanoseconds
for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
self.points.append([p[0], p[1], p[2], p[3]])
if now > self.end_time:
if not self.points:
self.get_logger().warn("No points received!")
self.destroy_node()
self.finished = True
return
np_points = np.array(self.points, dtype=np.float32)
intensities = np_points[:, 3]
norm_int = (intensities - intensities.min()) / (intensities.ptp() + 1e-8)
# Map normalized intensity to RGB colormap
colors = self.cmap(norm_int)[:, :3] # RGB 0-1
colors = (colors * 255).astype(np.uint8)
rgb_int = np.left_shift(colors[:,0].astype(np.uint32), 16) | \
np.left_shift(colors[:,1].astype(np.uint32), 8) | \
colors[:,2].astype(np.uint32)
filename = "pointcloud.pcd"
self.write_pcd_with_intensity_rgb(filename, np_points, rgb_int)
self.get_logger().info(f"Saved {filename}")
self.destroy_node()
self.finished = True
def write_pcd_with_intensity_rgb(self, filename, points, rgb_int):
header = f"""# .PCD v0.7 - Point Cloud Data file format
VERSION 0.7
FIELDS x y z intensity rgb
SIZE 4 4 4 4 4
TYPE F F F F U
COUNT 1 1 1 1 1
WIDTH {points.shape[0]}
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS {points.shape[0]}
DATA binary
"""
self.buffer.write(header.encode('ascii'))
for i in range(points.shape[0]):
self.buffer.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
class LidarTransformPublisher(Node):
def __init__(self, lidar1_buffer, lidar1_frame, lidar2_buffer, lidar2_frame):
super().__init__('static_transform_lidar_offsets')
self.br = StaticTransformBroadcaster(self)
self.lidar1_buffer = lidar1_buffer
self.lidar2_buffer = lidar2_buffer
self.lidar1_frame = lidar1_frame
self.lidar2_frame = lidar2_frame
def publish(self):
self.pcd_1 = self.pcd_buffer_to_o3d(self.lidar1_buffer)
self.pcd_2 = self.pcd_buffer_to_o3d(self.lidar2_buffer)
self.T = self.compute_transform()
self.get_logger().info(f"Computed initial transform:\n{self.T}")
T_copy = np.array(self.T, copy=True)
trans = T_copy[:3, 3]
rot_quat = R.from_matrix(T_copy[:3, :3]).as_quat()
t = TransformStamped()
t.header.stamp.sec = 0
t.header.stamp.nanosec = 0
t.header.frame_id = self.lidar1_frame
t.child_frame_id = self.lidar2_frame
t.transform.translation.x = trans[0]
t.transform.translation.y = trans[1]
t.transform.translation.z = trans[2]
t.transform.rotation.x = rot_quat[0]
t.transform.rotation.y = rot_quat[1]
t.transform.rotation.z = rot_quat[2]
t.transform.rotation.w = rot_quat[3]
self.br.sendTransform(t)
self.get_logger().info("Published static transform.")
def pcd_buffer_to_o3d(self, buffer: BytesIO):
buffer.seek(0)
header_lines = []
while True:
line = buffer.readline().decode('ascii').strip()
if not line:
continue
header_lines.append(line)
if line.startswith("DATA"):
data_line = line
break
if not data_line.lower().startswith("data binary"):
raise NotImplementedError("Only binary PCD supported")
num_points = 0
for line in header_lines:
if line.startswith("POINTS"):
num_points = int(line.split()[1])
if num_points == 0:
raise ValueError("PCD header missing point count")
dtype = np.dtype([
('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('intensity', 'f4'), ('rgb', 'u4')
])
data = buffer.read(num_points * dtype.itemsize)
points_array = np.frombuffer(data, dtype=dtype, count=num_points)
pcd = o3d.geometry.PointCloud()
xyz = np.stack([points_array['x'], points_array['y'], points_array['z']], axis=-1)
pcd.points = o3d.utility.Vector3dVector(xyz)
return pcd
def compute_transform(self):
voxel_size = 0.2 # coarse-to-fine pyramid base
# --- Feature extraction ---
def preprocess(pcd, voxel):
pcd_down = pcd.voxel_down_sample(voxel)
pcd_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=voxel*2, max_nn=30))
fpfh = o3d.pipelines.registration.compute_fpfh_feature(
pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=voxel*5, max_nn=100))
return pcd_down, fpfh
src_down, src_fpfh = preprocess(self.pcd_2, voxel_size)
tgt_down, tgt_fpfh = preprocess(self.pcd_1, voxel_size)
# --- Global alignment with RANSAC ---
result_ransac = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
src_down, tgt_down, src_fpfh, tgt_fpfh, True,
1.5, # distance threshold
o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
4,
[
o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(1.5)
],
o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 500)
)
trans_init = result_ransac.transformation
# --- Multi-scale ICP refinement ---
voxel_radii = [0.2, 0.1, 0.05]
max_iters = [50, 30, 14]
transformation = trans_init
for radius, iters in zip(voxel_radii, max_iters):
src_down = self.pcd_2.voxel_down_sample(radius)
tgt_down = self.pcd_1.voxel_down_sample(radius)
src_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius*2, max_nn=30))
tgt_down.estimate_normals(o3d.geometry.KDTreeSearchParamHybrid(radius=radius*2, max_nn=30))
result_icp = o3d.pipelines.registration.registration_icp(
src_down, tgt_down, radius*2, transformation,
o3d.pipelines.registration.TransformationEstimationPointToPlane()
)
transformation = result_icp.transformation
return transformation
def monitor_nodes(nodes, publisher):
while rclpy.ok():
if all(node.finished for node in nodes):
print("All pointclouds captured")
publisher.publish()
return
time.sleep(0.1)
def main():
rclpy.init()
buffer_velodyne = BytesIO()
buffer_livox = BytesIO()
executor = MultiThreadedExecutor()
nodes = [
PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', buffer_velodyne, 350),
PointCloudSaver('livox_pcd_saver', '/livox/lidar', buffer_livox, 1000),
]
publisher = LidarTransformPublisher(buffer_velodyne, 'velodyne', buffer_livox, 'frame_default')
monitor_thread = threading.Thread(target=monitor_nodes, args=(nodes,publisher), daemon=True)
monitor_thread.start()
for node in nodes:
executor.add_node(node)
try:
executor.spin()
finally:
monitor_thread.join()
rclpy.shutdown()
if __name__ == "__main__":
main()