Compare commits

...

6 Commits

Author SHA1 Message Date
866bc890a6 asd lab 2025-05-13 21:58:37 +02:00
dd0834a69a fixed random crashes if db scan failed 2025-05-12 20:41:01 +02:00
7bfe430fda added ros2 visualization 2025-05-12 20:34:07 +02:00
deef3bc819 optimized m_estimator even more 2025-05-12 11:06:57 +02:00
952f4239d5 optimized m_estimator 2025-05-12 10:51:42 +02:00
2f3f49a657 optimized highlight extractor 2025-05-12 10:07:37 +02:00
5 changed files with 161 additions and 103 deletions

View File

@@ -10,11 +10,10 @@ opt-level = 2 # Maximum optimization for release
image = "0.25.6"
show-image = "0.14.1"
ndarray = "0.16.0"
ndarray-linalg = { version = "0.17.0", features = ["intel-mkl"] }
rand = "0.9.1"
rayon = "1.10.0"
hdbscan = "0.10.0"
nalgebra = "0.33.2"
indicatif = "0.17.11"
r2r = "0.9.5"
futures-core = "0.3.31"
futures = "0.3.31"

View File

@@ -2,25 +2,26 @@ mod pipeline;
use rand::Rng;
use rayon::prelude::*;
use std::collections::VecDeque;
use std::sync::{mpsc, Arc, Mutex};
use std::sync::{mpsc, Arc};
use std::thread;
use std::time::{Duration, Instant};
use std::time::{Duration};
use indicatif::{MultiProgress, ProgressBar, ProgressStyle};
use r2r::QosProfile;
use futures::{executor::LocalPool, future, stream::StreamExt, task::LocalSpawnExt};
use image::{ImageReader, Rgb, RgbImage};
use show_image::{create_window, ImageInfo, ImageView, PixelFormat};
use crate::pipeline::hdb_clusterer::create_pointcloud_labels_thread;
use crate::pipeline::highlight_extractor::{create_extract_thread, Pointcloud};
use crate::pipeline::highlight_extractor::{create_extract_thread};
use crate::pipeline::m_estimator::create_mestimator_thread;
use r2r::geometry_msgs::msg::Vector3;
#[show_image::main]
fn main() {
let ctx = r2r::Context::create().unwrap();
let mut node = r2r::Node::create(ctx, "node", "").unwrap();
let subscriber = node.subscribe::<r2r::sensor_msgs::msg::Image>("/camera/front", QosProfile::default()).unwrap();
let mut timer = node.create_wall_timer(Duration::from_millis(1000)).unwrap();
let lane_left_pub = node.create_publisher::<r2r::nav_msgs::msg::Path>("/lane_detection/left", QosProfile::default()).unwrap();
let lane_right_pub = node.create_publisher::<r2r::nav_msgs::msg::Path>("/lane_detection/right", QosProfile::default()).unwrap();
let pcd_pub = node.create_publisher::<r2r::sensor_msgs::msg::PointCloud2>("/lane_detection/highlights", QosProfile::default()).unwrap();
let cmd_vel_pub = node.create_publisher::<r2r::geometry_msgs::msg::Twist>("/cmd_vel_in", QosProfile::default()).unwrap();
let (img_tx, img_rx) = mpsc::sync_channel::<Arc<r2r::sensor_msgs::msg::Image>>(1);
@@ -28,9 +29,9 @@ fn main() {
let mut pool = LocalPool::new();
let spawner = pool.spawner();
let (pointcloud_rx, usage_extract) = create_extract_thread(img_rx, 196, 0.025);
let (pointcloud_rx, usage_extract) = create_extract_thread(img_rx, 32, 0.05, pcd_pub);
let (cluster_labels_rx, usage_cluster) = create_pointcloud_labels_thread(pointcloud_rx);
let (z_rx, usage_detect) = create_mestimator_thread(cluster_labels_rx);
let (z_rx, usage_detect) = create_mestimator_thread(cluster_labels_rx, lane_left_pub, lane_right_pub);
let multi_stats = MultiProgress::new();
let p_style = ProgressStyle::default_bar().template("{prefix:15} {bar:50.gray/white} {pos:>6} us | {len:>6} us").unwrap();
@@ -40,17 +41,10 @@ fn main() {
let p_max = multi_stats.add(ProgressBar::new(100).with_prefix("Pipeline load").with_style(ProgressStyle::default_bar().template("{prefix:15} {bar:50.red/white} {percent:>3}%").unwrap()));
let p_avg_ms = multi_stats.add(ProgressBar::new(100_000).with_prefix("Pipeline delay").with_style(ProgressStyle::default_bar().template("{prefix:15} {bar:50.cyan/white} {pos:>6} us").unwrap()));
let p_framerate = multi_stats.add(ProgressBar::new(150).with_prefix("Framerate").with_style(ProgressStyle::default_bar().template("{prefix:15} {bar:50.blue/white} {pos:>3} FPS").unwrap()));
let mut t: VecDeque<Duration> = VecDeque::with_capacity(25);
let mut now: Instant = Instant::now();
let img = ImageReader::open("./images/lane_detection_loop_80.png").unwrap().decode().unwrap();
// Run the subscriber in one task, printing the messages
spawner.spawn_local(async move {
subscriber
.for_each(|mut msg| {
msg.data = img.clone().into_bytes();
.for_each(|msg| {
img_tx.send(Arc::new(msg)).unwrap();
future::ready(())
})
@@ -58,34 +52,18 @@ fn main() {
}).unwrap();
thread::spawn(move || {
let window = create_window("image", Default::default()).unwrap();
for z in z_rx {
let mut rgb_image = RgbImage::new(800, 800);
let colors = vec![Rgb([0, 255, 0]), Rgb([255, 0, 0])];
(0..rgb_image.height()).for_each(|x| {
let x_m = x as f64 * (45.0 / 800.0);
let const_part = - z[1] - x_m * z[2] + 0.5 * z[3] * x_m.powi(2);
let l = (0.5 * z[0] + const_part) * (800.0/45.0);;
let r = (-0.5 * z[0] + const_part) * (800.0/45.0);;
if l.abs() < rgb_image.width() as f64 / 2.0 - 1.0 {
rgb_image.put_pixel((rgb_image.width() as f64 /2.0 + l) as u32, rgb_image.height() - 1 - x, colors[0]);
}
if r.abs() < rgb_image.width() as f64 / 2.0 - 1.0 {
rgb_image.put_pixel((rgb_image.width() as f64/2.0 + r) as u32, rgb_image.height() - 1 - x, colors[1]);
}
});
let image = ImageView::new(ImageInfo::new(PixelFormat::Rgb8, 800, 800), rgb_image.iter().as_slice());
window.set_image("camera", image).unwrap();
let x_m = 1.0;
let cmd_vel = r2r::geometry_msgs::msg::Twist {
linear: Vector3 {x: 1.0, y: 0.0, z: 0.0},
angular: Vector3 {x: 0.0, y: 0.0, z: -2.0 * ((-z[1] - x_m * z[2] + 0.5 * z[3] * x_m.powi(2)) / x_m).atan()},
};
cmd_vel_pub.publish(&cmd_vel).unwrap();
}
});
loop {
node.spin_once(Duration::from_millis(10));
node.spin_once(Duration::from_millis(16));
pool.run_until_stalled();
let u_extract = *usage_extract.lock().unwrap();
@@ -93,7 +71,7 @@ fn main() {
let u_detect = *usage_detect.lock().unwrap();
let u_vec = vec![u_extract, u_cluster, u_detect];
p_extract.set_length(u_extract.1.as_micros() as u64);
p_extract.set_position(u_extract.0.as_micros() as u64);
p_cluster.set_length(u_cluster.1.as_micros() as u64);
@@ -103,13 +81,6 @@ fn main() {
p_max.set_position(u_vec.iter().map(|(t, d)| ((t.as_secs_f64() / d.as_secs_f64()) * 100.0) as u64).max().unwrap());
p_avg_ms.set_position(u_vec.iter().map(|(t, _)| t).sum::<Duration>().as_micros() as u64);
p_framerate.set_position((1.0 / (t.iter().map(|d| d.as_secs_f64()).sum::<f64>() / t.len() as f64)) as u64);
if t.len() == 25 {
t.pop_front();
}
t.push_back(now.elapsed());
now = Instant::now();
}
}

View File

@@ -26,7 +26,7 @@ impl SortLabeled for PointcloudLabeled {
if !averages.contains_key(label) {
averages.insert(*label, Vec::new());
}
averages.get_mut(label).unwrap().push(point[1]);
averages.get_mut(label).unwrap().push(point[0]);
});
let mut average: Vec<(i32, f64)> = averages.into_iter().map(|(label, y_values)| (label, y_values.iter().sum::<f64>() / y_values.len() as f64)).collect();
@@ -43,22 +43,20 @@ impl SortLabeled for PointcloudLabeled {
impl Label for Pointcloud {
fn label(&self) -> Option<PointcloudLabeled> {
if self.len() < 75 { return None }
if self.len() < 125 { return None }
let params = HdbscanHyperParams::builder()
.epsilon(10000.0)
.min_samples(3)
.allow_single_cluster(false)
.min_cluster_size(20)
.min_cluster_size(10)
.build();
let labels = Hdbscan::new(self, params).cluster().unwrap();
let pointcloud_labeled: PointcloudLabeled = Arc::new(zip(self.iter(), labels)
.map(|(point, label)| (point.clone(), label))
.collect());
Some(pointcloud_labeled)
if let Ok(labels) = Hdbscan::new(self, params).cluster() {
Some(Arc::new(zip(self.iter(), labels)
.map(|(point, label)| (point.clone(), label))
.collect()))
} else { None }
}
}

View File

@@ -2,35 +2,42 @@ use std::sync::{mpsc, Arc, Mutex};
use std::sync::mpsc::Receiver;
use std::thread;
use std::time::{Duration, Instant};
use rand::Rng;
use r2r::Publisher;
use rand::{rng, Rng};
use r2r::sensor_msgs::msg::Image;
use r2r::sensor_msgs::msg::{PointField, PointCloud2};
use r2r::builtin_interfaces::msg::Time;
use r2r::std_msgs::msg::Header;
pub type Pointcloud = Arc<Vec<Vec<f64>>>;
trait ExtractHighlights {
fn get_highlights(&self, threshold: u8, downsample: f64) -> Pointcloud;
}
trait Visualize{
fn visualize(&self, pub_pcd: &Publisher<PointCloud2>);
}
impl ExtractHighlights for Image {
fn get_highlights(&self, threshold: u8, downsample: f64) -> Pointcloud {
let h_i = [
[-7.74914499e-03, 3.95733793e-18, 3.10353257e00],
[8.56519716e-18, 9.42313768e-05, -1.86052093e00],
[2.57498016e-18, -2.73825295e-03, 1.00000000e00],
[-1.31918135e-20, -1.55163853e-06, 2.44274454e-02],
[-5.89622642e-05, -3.10327706e-07, 2.37534136e-02],
[-5.57265378e-21, 6.51688183e-05, -2.59527061e-02],
];
let max_rng = (u32::MAX as f64 * downsample) as u32;
let mut rng = rand::rng();
Arc::new(self.data
.iter()
.enumerate()
.filter(|(i, _)| *i as u32 / self.width >= self.height / 2)
.filter(|(_, pixel)| **pixel > threshold)
.enumerate()
.map(|(i, pixel)| (pixel, i as f64 % self.width as f64, i as f64 / self.width as f64))
.filter(|(pixel, _, h)| **pixel > threshold && **pixel < 100 && *h > self.height as f64 * 0.4)
.filter(|_| {
let mut rng = rand::rng();
rng.random::<u32>() < max_rng
})
.map(|(i, _)| {
let x = i as f64 % self.width as f64;
let y = i as f64 / self.width as f64;
.map(|(_, x, y)| {
// Convert to homogeneous coordinates
let u = h_i[0][0] * x + h_i[0][1] * y + h_i[0][2];
@@ -38,15 +45,53 @@ impl ExtractHighlights for Image {
let w = h_i[2][0] * x + h_i[2][1] * y + h_i[2][2];
let u_norm = u / w;
let v_norm = v / w;
let v_norm = -v / w;
vec![u_norm, v_norm]
vec![v_norm, u_norm]
})
//.filter(|point| point[0].abs() <= 5.0)
.filter(|point| point[0].abs() <= 1.5 && point[1] <= 3.0)
.collect())
}
}
pub fn create_extract_thread(image_rx: Receiver<Arc<Image>>, threshold: u8, downsample: f64) -> (Receiver<Pointcloud>, Arc<Mutex<(Duration, Duration)>>) {
impl Visualize for Pointcloud {
fn visualize(&self, pub_pcd: &Publisher<PointCloud2>) {
let header = Header {
stamp: Time {
sec: 0,
nanosec: 0,
},
frame_id: "front_camera_link".to_string(),
};
let pcd_bytes = self.
iter()
.flat_map(|point| vec![point[1], -point[0], -0.7])
.map(|f| (f as f32).to_le_bytes())
.flatten()
.collect::<Vec<u8>>();
let msg = PointCloud2 {
header,
height: 1,
width: self.len() as u32,
fields: vec![
PointField { name: "x".to_string(), offset: 0, datatype: 7, count: 1 },
PointField { name: "y".to_string(), offset: 4, datatype: 7, count: 1 },
PointField { name: "z".to_string(), offset: 8, datatype: 7, count: 1 },
],
is_bigendian: false,
point_step: 12,
row_step: 12,
data: pcd_bytes,
is_dense: true,
};
pub_pcd.publish(&msg).unwrap();
}
}
pub fn create_extract_thread(image_rx: Receiver<Arc<Image>>, threshold: u8, downsample: f64, pub_pcd: Publisher<PointCloud2>) -> (Receiver<Pointcloud>, Arc<Mutex<(Duration, Duration)>>) {
let (tx, rx) = mpsc::sync_channel::<Pointcloud>(1);
let usage = Arc::new(Mutex::new((Duration::ZERO, Duration::ZERO)));
let local_usage = usage.clone();
@@ -57,9 +102,10 @@ pub fn create_extract_thread(image_rx: Receiver<Arc<Image>>, threshold: u8, down
let start = Instant::now();
let poi = image.get_highlights(threshold, downsample);
let end = Instant::now();
poi.visualize(&pub_pcd);
tx.send(poi).unwrap();
*local_usage.lock().unwrap() = (end - start, t_loop.elapsed());
t_loop = Instant::now();
}

View File

@@ -2,12 +2,59 @@ use std::sync::{mpsc, Arc, Mutex};
use std::sync::mpsc::Receiver;
use std::thread;
use std::time::{Duration, Instant};
use nalgebra::DMatrix;
use ndarray::{Array1, Array2};
use crate::pipeline::hdb_clusterer::PointcloudLabeled;
use ndarray_linalg::Inverse;
use r2r::builtin_interfaces::msg::Time;
use r2r::std_msgs::msg::Header;
use r2r::nav_msgs::msg::Path;
use r2r::geometry_msgs::msg::{Point, Pose, PoseStamped, Quaternion};
use r2r::Publisher;
pub type LaneEstimation = Arc<Vec<f64>>;
pub fn create_mestimator_thread(lanes_rx: Receiver<PointcloudLabeled>) -> (Receiver<LaneEstimation>, Arc<Mutex<(Duration, Duration)>>) {
trait Visualize {
fn visualize(&self, pub_left: &Publisher<Path>, pub_right: &Publisher<Path>);
}
impl Visualize for Vec<f64> {
fn visualize(&self, pub_left: &Publisher<Path>, pub_right: &Publisher<Path>) {
let mut lane_left = Path {
header: Header {stamp: Time {sec: 0, nanosec: 0}, frame_id: "front_camera_link".to_string()},
poses: Vec::<PoseStamped>::new()
};
let mut right_lane = Path {
header: Header {stamp: Time {sec: 0, nanosec: 0}, frame_id: "front_camera_link".to_string()},
poses: Vec::<PoseStamped>::new()
};
(10..250).for_each(|x| {
let x_m = x as f64 / 10.0;
let const_part = - self[1] - x_m * self[2] + 0.5 * self[3] * x_m.powi(2);
let l = 0.5 * self[0] + const_part;
let r = -0.5 * self[0] + const_part;
if l.abs() < 10.0 {
lane_left.poses.push(PoseStamped {header: lane_left.header.clone(), pose: Pose {
position: Point {x: x_m, y: -l, z: -0.7},
orientation: Quaternion {x: 0.0, y: 0.0, z: 0.0, w: 0.0}
}})};
if r.abs() < 10.0 {
right_lane.poses.push(PoseStamped {header: lane_left.header.clone(), pose: Pose {
position: Point {x: x_m, y: -r, z: -0.7},
orientation: Quaternion {x: 0.0, y: 0.0, z: 0.0, w: 0.0}
}})};
});
pub_left.publish(&lane_left).unwrap();
pub_right.publish(&right_lane).unwrap();
}
}
pub fn create_mestimator_thread(lanes_rx: Receiver<PointcloudLabeled>, pub_left: Publisher<Path>, pub_right: Publisher<Path>) -> (Receiver<LaneEstimation>, Arc<Mutex<(Duration, Duration)>>) {
let (z_tx, z_rx) = mpsc::sync_channel::<LaneEstimation>(1);
let usage = Arc::new(Mutex::new((Duration::ZERO, Duration::ZERO)));
let local_usage = usage.clone();
@@ -22,42 +69,39 @@ pub fn create_mestimator_thread(lanes_rx: Receiver<PointcloudLabeled>) -> (Recei
let y = Array1::from_vec(lanes.iter().map(|(point, label)| point[0]).collect());
let mut H: Array2<f64> = Array2::from_shape_vec((0, 4), Vec::<f64>::new()).unwrap();
let mut H: Array2<f64> = Array2::zeros((lanes.len(), 4));
lanes.iter().for_each(|(point, label)| {
let a= vec![if *label == 0 {0.5} else {-0.5}, -1.0, -point[1], 0.5*point[1].powi(2)];
let b: Array1<f64> = Array1::from_vec(a);
H.push_row(b.view()).unwrap()
});
for (i, (point, label)) in lanes.iter().enumerate() {
let y = point[1];
H[[i, 0]] = if *label == 0 { 0.5 } else { -0.5 };
H[[i, 1]] = -1.0;
H[[i, 2]] = -y;
H[[i, 3]] = 0.5 * y.powi(2);
}
let H_t = H.t();
for _ in 0..3 {
let res = lanes
.iter()
.map(|(point, label)| point[0] - (if *label == 0 {0.5} else {-0.5} * z[0] - z[1] - point[1] * z[2] + 0.5 * z[3] * point[1].powi(2)))
.map(|r| 1.0/(1.0 + (r/c).powi(2)))
.collect::<Vec<_>>();
let mut w = Array2::zeros((lanes.len(), lanes.len()));
let w = Array2::from_diag(&Array1::from_vec(res));
for (i, (point, label)) in lanes.iter().enumerate() {
let r = point[0] - (if *label == 0 { 0.5 } else { -0.5 } * z[0] - z[1] - point[1] * z[2] + 0.5 * z[3] * point[1].powi(2));
let diag_value = 1.0 / (1.0 + (r / c).powi(2));
let first_part: Array2<f64> = H_t.dot(&w).dot(&H);
w[[i, i]] = diag_value;
}
let a_nalgebra = DMatrix::from_row_slice(4, 4, first_part.as_slice().unwrap());
// Perform the matrix inversion using nalgebra
let inv = a_nalgebra.pseudo_inverse(0.0).unwrap();
// Convert the nalgebra matrix back to Array2<f64>
let second_part: Array2<f64> = Array2::from_shape_vec((4, 4), inv.as_slice().to_vec()).unwrap();
z = second_part.dot(&H_t).dot(&w).dot(&y).to_vec();
if let Ok(first_part) = H_t.dot(&w).dot(&H).inv() {
z = first_part.dot(&H_t).dot(&w).dot(&y).to_vec();
}
}
let end = Instant::now();
z_tx.send(Arc::new(z.clone())).unwrap();
*local_usage.lock().unwrap() = (end - start, t_loop.elapsed());
z.visualize(&pub_left, &pub_right);
t_loop = Instant::now();
}
});