NEVER USE PYTHON IN RUST

This commit is contained in:
2025-05-05 22:37:37 +02:00
parent 0e3ae8be8a
commit a9da86e8af
2 changed files with 25 additions and 130 deletions

View File

@@ -12,5 +12,3 @@ show-image = "0.14.1"
rand = "0.9.1"
rayon = "1.10.0"
hdbscan = "0.10.0"
pyo3 = { version = "0.21.2", features = ["auto-initialize"] }
numpy = "0.21.0"

View File

@@ -6,14 +6,9 @@ use std::thread;
use std::time::{Duration, Instant};
use hdbscan::{Hdbscan, HdbscanHyperParams};
use image::{DynamicImage, ImageReader, Rgb, RgbImage};
use numpy::PyArray2;
use pyo3::prelude::PyModule;
use pyo3::Python;
use pyo3::types::PyList;
use rand::{Rng};
use rayon::prelude::*;
use show_image::{create_window, ImageInfo, ImageView, PixelFormat};
use show_image::event::VirtualKeyCode::V;
fn create_extract_thread(image_rx: Receiver<Arc<Vec<u8>>>, width: u32, threshold: u8, downsample: f64) -> Receiver<Arc<Vec<Vec<f64>>>> {
let (tx, rx) = mpsc::sync_channel::<Arc<Vec<Vec<f64>>>>(1);
@@ -106,131 +101,33 @@ fn create_transform_thread(pointcloud_rx : Receiver<Arc<Vec<Vec<f64>>>>) -> Rece
let (projection_tx, projection_rx) = mpsc::sync_channel::<Arc<Vec<Vec<f64>>>>(1);
thread::spawn(move || {
Python::with_gil(|py| {
let simulation_image_helper = PyModule::from_code(py,r#"
import numpy as np
let h_i = [
[-7.74914499e-03, 3.95733793e-18, 3.10353257e00],
[8.56519716e-18, 9.42313768e-05, -1.86052093e00],
[2.57498016e-18, -2.73825295e-03, 1.00000000e00],
];
for pointcloud in pointcloud_rx {
let projection = pointcloud
.iter()
.map(|pt| {
let x = pt[0];
let y = pt[1];
class SimulationImageHelper:
"""
This class can be used to project points on the road surface onto the image
and vice versa. It may be used for detecting lanes in simulation.
// Convert to homogeneous coordinates
let u = h_i[0][0] * x + h_i[0][1] * y + h_i[0][2];
let v = h_i[1][0] * x + h_i[1][1] * y + h_i[1][2];
let w = h_i[2][0] * x + h_i[2][1] * y + h_i[2][2];
Attributes:
yHorizon: The y-coordinate of the horizon in the image
let u_norm = u / w;
let v_norm = v / w;
Methods:
image2road: project 2d image points to 3d road coords
road2image: project 3d road coords to 2d image points
distance2imagerow: return which y-coord in the image corresponds to a
given distance on the 3d road plane
"""
vec![u_norm, v_norm]
})
.collect();
def __init__(self,notsurewhatthisis):
"""
The class constructor.
"""
# from calib_image.py
self.H_I = np.matrix(
[
[-7.74914499e-03, 3.95733793e-18, 3.10353257e00],
[8.56519716e-18, 9.42313768e-05, -1.86052093e00],
[2.57498016e-18, -2.73825295e-03, 1.00000000e00],
]
)
self.H_I = self.H_I.reshape(3, 3)
self.H = self.H_I.I
X_infinity = np.matrix([0, 10000, 1]).reshape(3, 1)
self.yHorizon = self.H * X_infinity
self.yHorizon = int((self.yHorizon[1] / self.yHorizon[2]).item())
def image2road(self, pts2d):
"""
Transform a point on the road surface from the image to 3D coordinates
(in DIN70000, i.e. X to front, Y to left, origin in center of vehicle at
height 0).
"""
pts2d = np.array(pts2d)
N, cols = pts2d.shape
if (cols == 1) and (N == 2):
# if just two coordinates are given, we make sure we have a (2x1) vector
pts2d = pts2d.T
assert (
cols == 2
), "pts2d should be a Nx2 numpy array, but we obtained (%d, %d)" % (N, cols)
X = self.H_I * np.hstack((pts2d, np.ones((pts2d.shape[0], 1)))).T
X = X / X[2, :]
X = X.T
# the camera is "self.C[2]" in front of the vehicle's center
return np.hstack((X[:, 1], -X[:, 0]))
def road2image(self, ptsRd, imSize=None):
"""
Transform a 3d point on the road surface (in DIN70000, i.e. X to front,
Y to left) to image coordinates.
"""
ptsRd = np.array(ptsRd)
N, cols = ptsRd.shape
if (cols == 1) and (N == 2):
# if just two coordinates are given, we make sure we have a (2x1) vector
ptsRd = ptsRd.T
N = cols
assert (
cols == 2
), "ptsRd should be a Nx2 numpy array, but we obtained (%d, %d)" % (N, cols)
# go back from DIN70000 to our image coordinate system
pts = np.hstack(
(
-ptsRd[:, 1].reshape((-1, 1)),
ptsRd[:, 0].reshape((-1, 1)),
np.ones((N, 1)),
)
)
x = self.H * pts.T
x = x / x[2, :]
x = x.T
if imSize is not None:
valid = np.logical_and((x[:, 0] >= 0), (x[:, 1] >= 0))
valid = np.logical_and(valid, (x[:, 0] < imSize[1]))
valid = np.logical_and(valid, (x[:, 1] < imSize[0]))
valid = np.nonzero(valid)[0].tolist()
x = x[valid, :]
return np.hstack((x[:, 0], x[:, 1]))
def distance2imagerow(self, distance):
"""
Compute which row in the image corresponds to a distance (in DIN70000).
"""
p = self.road2image(np.array([[distance, 0]]))
return p[0, 1]
"#,
"simulation_image_helper.py",
"simImgHelper",
).unwrap();
let image_helper_class = simulation_image_helper
.getattr("SimulationImageHelper")
.unwrap();
let house = image_helper_class.call1(("",)).unwrap();
for pointcloud in pointcloud_rx {
let pylist = PyList::new(py, pointcloud.iter().map(|inner| PyList::new(py, inner)));
let result : &PyArray2<f64> = house.call_method1("image2road", (pylist,)).unwrap().extract().unwrap();
let arr = result.readonly().as_array().outer_iter().map(|row| {
let vec = row.to_vec();
vec![-vec[1], vec[0]]
}).collect::<Vec<_>>();
projection_tx.send(Arc::new(arr)).unwrap();
}
});
projection_tx.send(Arc::new(projection)).unwrap();
}
});
projection_rx
}
@@ -240,7 +137,7 @@ fn create_filter_thread() {
}
fn dummy_image_spawner_thread() -> Receiver<Arc<Vec<u8>>> {
let img: DynamicImage = ImageReader::open("./images/lane_detection_loop_60.png").unwrap().decode().unwrap();
let img: DynamicImage = ImageReader::open("./images/lane_detection_loop_20.png").unwrap().decode().unwrap();
let img_data: Vec<u8> = img.clone().into_bytes();
let (img_tx, img_rx) = mpsc::sync_channel::<Arc<Vec<u8>>>(1);
@@ -257,7 +154,7 @@ fn dummy_image_spawner_thread() -> Receiver<Arc<Vec<u8>>> {
#[show_image::main]
fn main() {
let image_rx = dummy_image_spawner_thread();
let pointcloud_rx = create_extract_thread(image_rx, 800, 196, 0.05);
let pointcloud_rx = create_extract_thread(image_rx, 800, 196, 0.025);
let projection_rx = create_transform_thread(pointcloud_rx);
let cluster_labels_rx = create_pointcloud_labels_thread(projection_rx);
let clusters_rx = create_cluster_separator_thread(cluster_labels_rx);