dual lidar calibration script
This commit is contained in:
229
scripts/calibrate_lidar.py
Normal file
229
scripts/calibrate_lidar.py
Normal file
@@ -0,0 +1,229 @@
|
||||
import rclpy
|
||||
from rclpy.node import Node
|
||||
from rclpy.executors import MultiThreadedExecutor
|
||||
from sensor_msgs.msg import PointCloud2
|
||||
from geometry_msgs.msg import TransformStamped
|
||||
import sensor_msgs_py.point_cloud2 as pc2
|
||||
from tf2_ros import StaticTransformBroadcaster
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import struct
|
||||
from io import BytesIO
|
||||
import threading
|
||||
import time
|
||||
import open3d as o3d
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
|
||||
class PointCloudSaver(Node):
|
||||
def __init__(self, node_name: str, pointcloud_topic: str, buffer, timeout_ms: int):
|
||||
super().__init__(node_name)
|
||||
self.subscription = self.create_subscription(
|
||||
PointCloud2,
|
||||
pointcloud_topic,
|
||||
self.callback,
|
||||
10
|
||||
)
|
||||
self.buffer = buffer
|
||||
self.finished = False
|
||||
self.points = []
|
||||
self.end_time = self.get_clock().now().nanoseconds + (timeout_ms * 1_000_000)
|
||||
self.cmap = plt.get_cmap('jet')
|
||||
|
||||
def callback(self, msg):
|
||||
now = self.get_clock().now().nanoseconds
|
||||
for p in pc2.read_points(msg, field_names=("x", "y", "z", "intensity"), skip_nans=True):
|
||||
self.points.append([p[0], p[1], p[2], p[3]])
|
||||
|
||||
if now > self.end_time:
|
||||
if not self.points:
|
||||
self.get_logger().warn("No points received!")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
return
|
||||
|
||||
np_points = np.array(self.points, dtype=np.float32)
|
||||
intensities = np_points[:, 3]
|
||||
norm_int = (intensities - intensities.min()) / (intensities.ptp() + 1e-8)
|
||||
|
||||
# Map normalized intensity to RGB colormap
|
||||
colors = self.cmap(norm_int)[:, :3] # RGB 0-1
|
||||
colors = (colors * 255).astype(np.uint8)
|
||||
rgb_int = np.left_shift(colors[:,0].astype(np.uint32), 16) | \
|
||||
np.left_shift(colors[:,1].astype(np.uint32), 8) | \
|
||||
colors[:,2].astype(np.uint32)
|
||||
|
||||
filename = "pointcloud.pcd"
|
||||
self.write_pcd_with_intensity_rgb(filename, np_points, rgb_int)
|
||||
self.get_logger().info(f"Saved {filename}")
|
||||
self.destroy_node()
|
||||
self.finished = True
|
||||
|
||||
def write_pcd_with_intensity_rgb(self, filename, points, rgb_int):
|
||||
header = f"""# .PCD v0.7 - Point Cloud Data file format
|
||||
VERSION 0.7
|
||||
FIELDS x y z intensity rgb
|
||||
SIZE 4 4 4 4 4
|
||||
TYPE F F F F U
|
||||
COUNT 1 1 1 1 1
|
||||
WIDTH {points.shape[0]}
|
||||
HEIGHT 1
|
||||
VIEWPOINT 0 0 0 1 0 0 0
|
||||
POINTS {points.shape[0]}
|
||||
DATA binary
|
||||
"""
|
||||
self.buffer.write(header.encode('ascii'))
|
||||
for i in range(points.shape[0]):
|
||||
# x, y, z, intensity as float32, rgb as uint32
|
||||
self.buffer.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
|
||||
|
||||
|
||||
class LidarTransformPublisher(Node):
|
||||
def __init__(self, lidar1_buffer, lidar1_frame, lidar2_buffer, lidar2_frame):
|
||||
super().__init__('static_transform_lidar_offsets')
|
||||
|
||||
# Static TF broadcaster
|
||||
self.br = StaticTransformBroadcaster(self)
|
||||
|
||||
self.lidar1_buffer = lidar1_buffer
|
||||
self.lidar2_buffer = lidar2_buffer
|
||||
|
||||
self.lidar1_frame = lidar1_frame
|
||||
self.lidar2_frame = lidar2_frame
|
||||
|
||||
def publish(self):
|
||||
self.pcd_1 = self.pcd_buffer_to_o3d(self.lidar1_buffer)
|
||||
self.pcd_2 = self.pcd_buffer_to_o3d(self.lidar2_buffer)
|
||||
|
||||
# Compute transform once
|
||||
self.T = self.compute_transform()
|
||||
self.get_logger().info(f"Computed initial transform:\n{self.T}")
|
||||
|
||||
# Prepare translation and rotation
|
||||
T_copy = np.array(self.T, copy=True)
|
||||
trans = T_copy[:3, 3]
|
||||
rot_quat = R.from_matrix(T_copy[:3, :3]).as_quat() # [x, y, z, w]
|
||||
|
||||
# Create static TransformStamped
|
||||
t = TransformStamped()
|
||||
t.header.stamp.sec = 0
|
||||
t.header.stamp.nanosec = 0
|
||||
t.header.frame_id = self.lidar1_frame
|
||||
t.child_frame_id = self.lidar2_frame
|
||||
t.transform.translation.x = trans[0]
|
||||
t.transform.translation.y = trans[1]
|
||||
t.transform.translation.z = trans[2]
|
||||
t.transform.rotation.x = rot_quat[0]
|
||||
t.transform.rotation.y = rot_quat[1]
|
||||
t.transform.rotation.z = rot_quat[2]
|
||||
t.transform.rotation.w = rot_quat[3]
|
||||
|
||||
# Publish once
|
||||
self.br.sendTransform(t)
|
||||
self.get_logger().info("Published static transform.")
|
||||
|
||||
def pcd_buffer_to_o3d(self, buffer: BytesIO):
|
||||
buffer.seek(0)
|
||||
header_lines = []
|
||||
|
||||
# Read header lines until 'DATA' line
|
||||
while True:
|
||||
line = buffer.readline().decode('ascii').strip()
|
||||
if not line:
|
||||
continue
|
||||
header_lines.append(line)
|
||||
if line.startswith("DATA"):
|
||||
data_line = line
|
||||
break
|
||||
|
||||
# Ensure binary format
|
||||
if not data_line.lower().startswith("data binary"):
|
||||
raise NotImplementedError("Only binary PCD supported for buffer parsing")
|
||||
|
||||
# Parse number of points
|
||||
num_points = 0
|
||||
for line in header_lines:
|
||||
if line.startswith("POINTS"):
|
||||
num_points = int(line.split()[1])
|
||||
if line.startswith("FIELDS"):
|
||||
fields = line.split()[1:] # Expect: x y z intensity rgb
|
||||
|
||||
if num_points == 0:
|
||||
raise ValueError("PCD header does not specify number of points")
|
||||
|
||||
# Define numpy dtype based on expected fields
|
||||
dtype = np.dtype([
|
||||
('x', 'f4'),
|
||||
('y', 'f4'),
|
||||
('z', 'f4'),
|
||||
('intensity', 'f4'),
|
||||
('rgb', 'u4')
|
||||
])
|
||||
|
||||
# Read binary data
|
||||
data = buffer.read(num_points * dtype.itemsize)
|
||||
points_array = np.frombuffer(data, dtype=dtype, count=num_points)
|
||||
|
||||
# Convert to Open3D point cloud
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
xyz = np.stack([points_array['x'], points_array['y'], points_array['z']], axis=-1)
|
||||
pcd.points = o3d.utility.Vector3dVector(xyz)
|
||||
|
||||
return pcd
|
||||
|
||||
def compute_transform(self):
|
||||
# Downsample
|
||||
voxel_size = 0.05
|
||||
pcd_1_ds = self.pcd_1.voxel_down_sample(voxel_size)
|
||||
pcd_2_ds = self.pcd_2.voxel_down_sample(voxel_size)
|
||||
|
||||
# Estimate normals
|
||||
pcd_1_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
|
||||
pcd_2_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
|
||||
|
||||
# ICP registration
|
||||
threshold = 0.5
|
||||
reg_result = o3d.pipelines.registration.registration_icp(
|
||||
pcd_2_ds, pcd_1_ds, threshold,
|
||||
np.eye(4),
|
||||
o3d.pipelines.registration.TransformationEstimationPointToPoint()
|
||||
)
|
||||
return reg_result.transformation
|
||||
|
||||
|
||||
def monitor_nodes(nodes, publisher):
|
||||
"""Separate thread that monitors node status and shuts down ROS when done."""
|
||||
while rclpy.ok():
|
||||
if all(node.finished for node in nodes):
|
||||
print("All pointclouds captured")
|
||||
publisher.publish()
|
||||
return
|
||||
time.sleep(0.1) # check periodically
|
||||
|
||||
def main():
|
||||
rclpy.init()
|
||||
buffer_velodyne = BytesIO()
|
||||
buffer_livox = BytesIO()
|
||||
|
||||
executor = MultiThreadedExecutor()
|
||||
|
||||
nodes = [
|
||||
PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', buffer_velodyne, 200),
|
||||
PointCloudSaver('livox_pcd_saver', '/livox/lidar', buffer_livox, 500),
|
||||
]
|
||||
publisher = LidarTransformPublisher(buffer_velodyne, 'velodyne', buffer_livox, 'frame_default')
|
||||
|
||||
monitor_thread = threading.Thread(target=monitor_nodes, args=(nodes,publisher), daemon=True)
|
||||
monitor_thread.start()
|
||||
|
||||
for node in nodes:
|
||||
executor.add_node(node)
|
||||
try:
|
||||
executor.spin()
|
||||
finally:
|
||||
monitor_thread.join()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user