dual lidar calibration

This commit is contained in:
2025-08-16 12:03:09 +02:00
parent c7c6164ddf
commit 1d262e5e19
2 changed files with 130 additions and 7 deletions

View File

@@ -0,0 +1,87 @@
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from tf2_ros import StaticTransformBroadcaster
from geometry_msgs.msg import TransformStamped
import numpy as np
import open3d as o3d
from scipy.spatial.transform import Rotation as R
class StaticTransformPublisher(Node):
def __init__(self):
super().__init__('static_transform_from_pointclouds')
# Static TF broadcaster
self.br = StaticTransformBroadcaster(self)
# Pointcloud files
self.velodyne_file = "/root/velodyne.pcd"
self.livox_file = "/root/livox.pcd"
# Frames
self.livox_frame = "frame_default"
self.velodyne_frame = "velodyne"
# Compute transform once
self.T = self.compute_transform()
self.get_logger().info(f"Computed initial transform:\n{self.T}")
# Prepare translation and rotation
T_copy = np.array(self.T, copy=True)
trans = T_copy[:3, 3]
rot_quat = R.from_matrix(T_copy[:3, :3]).as_quat() # [x, y, z, w]
# Create static TransformStamped
t = TransformStamped()
t.header.stamp.sec = 0
t.header.stamp.nanosec = 0
t.header.frame_id = self.velodyne_frame
t.child_frame_id = self.livox_frame
t.transform.translation.x = trans[0]
t.transform.translation.y = trans[1]
t.transform.translation.z = trans[2]
t.transform.rotation.x = rot_quat[0]
t.transform.rotation.y = rot_quat[1]
t.transform.rotation.z = rot_quat[2]
t.transform.rotation.w = rot_quat[3]
# Publish once
self.br.sendTransform(t)
self.get_logger().info("Published static transform.")
def compute_transform(self):
# Load point clouds
pcd_vel = o3d.io.read_point_cloud(self.velodyne_file)
pcd_liv = o3d.io.read_point_cloud(self.livox_file)
# Downsample
voxel_size = 0.05
pcd_vel_ds = pcd_vel.voxel_down_sample(voxel_size)
pcd_liv_ds = pcd_liv.voxel_down_sample(voxel_size)
# Estimate normals
pcd_vel_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
pcd_liv_ds.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamKNN(knn=20))
# ICP registration
threshold = 0.5
reg_result = o3d.pipelines.registration.registration_icp(
pcd_liv_ds, pcd_vel_ds, threshold,
np.eye(4),
o3d.pipelines.registration.TransformationEstimationPointToPoint()
)
return reg_result.transformation
def main(args=None):
rclpy.init(args=args)
node = StaticTransformPublisher()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()

View File

@@ -1,11 +1,14 @@
import rclpy
from rclpy.node import Node
from rclpy.executors import MultiThreadedExecutor
from sensor_msgs.msg import PointCloud2
import sensor_msgs_py.point_cloud2 as pc2
import numpy as np
import matplotlib.pyplot as plt
import struct
from io import BytesIO
import threading
import time
class PointCloudSaver(Node):
def __init__(self, node_name: str, pointcloud_topic: str, buffer, timeout_ms: int):
@@ -17,6 +20,7 @@ class PointCloudSaver(Node):
10
)
self.buffer = buffer
self.finished = False
self.points = []
self.end_time = self.get_clock().now().nanoseconds + (timeout_ms * 1_000_000)
self.cmap = plt.get_cmap('jet')
@@ -29,7 +33,8 @@ class PointCloudSaver(Node):
if now > self.end_time:
if not self.points:
self.get_logger().warn("No points received!")
rclpy.shutdown()
self.destroy_node()
self.finished = True
return
np_points = np.array(self.points, dtype=np.float32)
@@ -45,8 +50,9 @@ class PointCloudSaver(Node):
filename = "pointcloud.pcd"
self.write_pcd_with_intensity_rgb(filename, np_points, rgb_int)
self.get_logger().info(f"Saved {filename} with intensity (grayscale) and colored RGB")
rclpy.shutdown()
self.get_logger().info(f"Saved {filename}")
self.destroy_node()
self.finished = True
def write_pcd_with_intensity_rgb(self, filename, points, rgb_int):
header = f"""# .PCD v0.7 - Point Cloud Data file format
@@ -64,13 +70,43 @@ DATA binary
self.buffer.write(header.encode('ascii'))
for i in range(points.shape[0]):
# x, y, z, intensity as float32, rgb as uint32
f.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
self.buffer.write(struct.pack('ffffI', points[i,0], points[i,1], points[i,2], points[i,3], rgb_int[i]))
def monitor_nodes(nodes):
"""Separate thread that monitors node status and shuts down ROS when done."""
while rclpy.ok():
if all(node.finished for node in nodes):
print("All nodes finished. Shutting down ROS.")
rclpy.shutdown()
break
time.sleep(0.1) # check periodically
def main():
rclpy.init()
with open('/root/velodyne.pcd', "w+") as f:
node = PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', f, 5000)
rclpy.spin(node)
file_velodyne = open('/root/velodyne.pcd', "wb+")
file_livox = open('/root/livox.pcd', "wb+")
executor = MultiThreadedExecutor()
nodes = [
PointCloudSaver('velodyne_pcd_saver', '/velodyne_points', file_velodyne, 5000),
PointCloudSaver('livox_pcd_saver', '/livox/lidar', file_livox, 5000),
]
monitor_thread = threading.Thread(target=monitor_nodes, args=(nodes,), daemon=True)
monitor_thread.start()
for node in nodes:
executor.add_node(node)
try:
executor.spin()
finally:
monitor_thread.join()
print("Executor and monitor thread exited cleanly.")
file_velodyne.close()
file_livox.close()
if __name__ == "__main__":
main()